espnet2.tasks package¶
espnet2.tasks.svs¶
Singing-voice-synthesis task.
-
class
espnet2.tasks.svs.
SVSTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.svs.espnet_model.ESPnetSVSModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array], float], Dict[str, numpy.ndarray]]][source]¶
-
classmethod
build_vocoder_from_file
(vocoder_config_file: Union[pathlib.Path, str] = None, vocoder_file: Union[pathlib.Path, str] = None, model: Optional[espnet2.svs.espnet_model.ESPnetSVSModel] = None, device: str = 'cpu')[source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.enh_s2t¶
-
class
espnet2.tasks.enh_s2t.
EnhS2TTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.enh.espnet_enh_s2t_model.ESPnetEnhS2TModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.asvspoof¶
-
class
espnet2.tasks.asvspoof.
ASVSpoofTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.asvspoof.espnet_model.ESPnetASVSpoofModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.hubert¶
-
class
espnet2.tasks.hubert.
HubertTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → Union[espnet2.hubert.espnet_model.HubertPretrainModel, espnet2.hubert.espnet_model.TorchAudioHubertPretrainModel][source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.diar¶
-
class
espnet2.tasks.diar.
DiarizationTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.diar.espnet_model.ESPnetDiarizationModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.spk¶
-
class
espnet2.tasks.spk.
SpeakerTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.spk.espnet_model.ESPnetSpeakerModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.spk_trainer.SpkTrainer
-
classmethod
espnet2.tasks.slu¶
-
class
espnet2.tasks.slu.
SLUTask
[source]¶ Bases:
espnet2.tasks.asr.ASRTask
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.slu.espnet_model.ESPnetSLUModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.mt¶
-
class
espnet2.tasks.mt.
MTTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.gan_tts¶
GAN-based text-to-speech task.
-
class
espnet2.tasks.gan_tts.
GANTTSTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
GAN-based text-to-speech task.
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.gan_tts.espnet_model.ESPnetGANTTSModel[source]¶
-
classmethod
build_optimizers
(args: argparse.Namespace, model: espnet2.gan_tts.espnet_model.ESPnetGANTTSModel) → List[torch.optim.optimizer.Optimizer][source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 2¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.gan_trainer.GANTrainer
-
classmethod
espnet2.tasks.st¶
-
class
espnet2.tasks.st.
STTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.uasr¶
-
class
espnet2.tasks.uasr.
UASRTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.uasr.espnet_model.ESPnetUASRModel[source]¶
-
classmethod
build_optimizers
(args: argparse.Namespace, model: espnet2.uasr.espnet_model.ESPnetUASRModel) → List[torch.optim.optimizer.Optimizer][source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 2¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶
-
classmethod
espnet2.tasks.lm¶
-
class
espnet2.tasks.lm.
LMTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.lm.espnet_model.ESPnetLanguageModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.enh¶
-
class
espnet2.tasks.enh.
EnhancementTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_iter_factory
(args: argparse.Namespace, distributed_option: espnet2.train.distributed_utils.DistributedOption, mode: str, kwargs: dict = None) → espnet2.iterators.abs_iter_factory.AbsIterFactory[source]¶ Build a factory object of mini-batch iterator.
This object is invoked at every epochs to build the iterator for each epoch as following:
>>> iter_factory = cls.build_iter_factory(...) >>> for epoch in range(1, max_epoch): ... for keys, batch in iter_fatory.build_iter(epoch): ... model(**batch)
The mini-batches for each epochs are fully controlled by this class. Note that the random seed used for shuffling is decided as “seed + epoch” and the generated mini-batches can be reproduces when resuming.
Note that the definition of “epoch” doesn’t always indicate to run out of the whole training corpus. “–num_iters_per_epoch” option restricts the number of iterations for each epoch and the rest of samples for the originally epoch are left for the next epoch. e.g. If The number of mini-batches equals to 4, the following two are same:
1 epoch without “–num_iters_per_epoch”
4 epoch with “–num_iters_per_epoch” == 4
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.enh.espnet_model.ESPnetEnhancementModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.tts¶
Text-to-speech task.
-
class
espnet2.tasks.tts.
TTSTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.tts.espnet_model.ESPnetTTSModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
classmethod
build_vocoder_from_file
(vocoder_config_file: Union[pathlib.Path, str] = None, vocoder_file: Union[pathlib.Path, str] = None, model: Optional[espnet2.tts.espnet_model.ESPnetTTSModel] = None, device: str = 'cpu')[source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.__init__¶
espnet2.tasks.abs_task¶
Abstract task module.
-
class
espnet2.tasks.abs_task.
AbsTask
[source]¶ Bases:
abc.ABC
-
classmethod
build_chunk_iter_factory
(args: argparse.Namespace, iter_options: espnet2.tasks.abs_task.IteratorOptions, mode: str) → espnet2.iterators.abs_iter_factory.AbsIterFactory[source]¶
-
abstract classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Sequence[Dict[str, numpy.ndarray]]], Dict[str, torch.Tensor]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_iter_factory
(args: argparse.Namespace, distributed_option: espnet2.train.distributed_utils.DistributedOption, mode: str, kwargs: dict = None) → espnet2.iterators.abs_iter_factory.AbsIterFactory[source]¶ Build a factory object of mini-batch iterator.
This object is invoked at every epochs to build the iterator for each epoch as following:
>>> iter_factory = cls.build_iter_factory(...) >>> for epoch in range(1, max_epoch): ... for keys, batch in iter_fatory.build_iter(epoch): ... model(**batch)
The mini-batches for each epochs are fully controlled by this class. Note that the random seed used for shuffling is decided as “seed + epoch” and the generated mini-batches can be reproduces when resuming.
Note that the definition of “epoch” doesn’t always indicate to run out of the whole training corpus. “–num_iters_per_epoch” option restricts the number of iterations for each epoch and the rest of samples for the originally epoch are left for the next epoch. e.g. If The number of mini-batches equals to 4, the following two are same:
1 epoch without “–num_iters_per_epoch”
4 epoch with “–num_iters_per_epoch” == 4
-
classmethod
build_iter_options
(args: argparse.Namespace, distributed_option: espnet2.train.distributed_utils.DistributedOption, mode: str)[source]¶
-
abstract classmethod
build_model
(args: argparse.Namespace) → espnet2.train.abs_espnet_model.AbsESPnetModel[source]¶
-
classmethod
build_model_from_file
(config_file: Union[pathlib.Path, str] = None, model_file: Union[pathlib.Path, str] = None, device: str = 'cpu') → Tuple[espnet2.train.abs_espnet_model.AbsESPnetModel, argparse.Namespace][source]¶ Build model from the files.
This method is used for inference or fine-tuning.
- Parameters:
config_file – The yaml file saved when training.
model_file – The model file saved when training.
device – Device type, “cpu”, “cuda”, or “cuda:N”.
-
classmethod
build_multiple_iter_factory
(args: argparse.Namespace, distributed_option: espnet2.train.distributed_utils.DistributedOption, mode: str)[source]¶
-
classmethod
build_optimizers
(args: argparse.Namespace, model: torch.nn.modules.module.Module) → List[torch.optim.optimizer.Optimizer][source]¶
-
abstract classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
classmethod
build_sequence_iter_factory
(args: argparse.Namespace, iter_options: espnet2.tasks.abs_task.IteratorOptions, mode: str) → espnet2.iterators.abs_iter_factory.AbsIterFactory[source]¶
-
classmethod
build_streaming_iterator
(data_path_and_name_and_type, preprocess_fn, collate_fn, key_file: str = None, batch_size: int = 1, dtype: str = <class 'numpy.float32'>, num_workers: int = 1, allow_variable_data_keys: bool = False, ngpu: int = 0, inference: bool = False) → torch.utils.data.dataloader.DataLoader[source]¶ Build DataLoader using iterable dataset
-
classmethod
build_task_iter_factory
(args: argparse.Namespace, iter_options: espnet2.tasks.abs_task.IteratorOptions, mode: str) → espnet2.iterators.abs_iter_factory.AbsIterFactory[source]¶ Build task specific iterator factory
Example
>>> class YourTask(AbsTask): ... @classmethod ... def add_task_arguments(cls, parser: argparse.ArgumentParser): ... parser.set_defaults(iterator_type="task") ... ... @classmethod ... def build_task_iter_factory( ... cls, ... args: argparse.Namespace, ... iter_options: IteratorOptions, ... mode: str, ... ): ... return FooIterFactory(...) ... ... @classmethod ... def build_iter_options( .... args: argparse.Namespace, ... distributed_option: DistributedOption, ... mode: str ... ): ... # if you need to customize options object
-
classmethod
check_task_requirements
(dataset: Union[espnet2.train.dataset.AbsDataset, espnet2.train.iterable_dataset.IterableESPnetDataset], allow_variable_data_keys: bool, train: bool, inference: bool = False) → None[source]¶ Check if the dataset satisfy the requirement of current Task
-
class_choices_list
= []¶
-
classmethod
get_default_config
() → Dict[str, Any][source]¶ Return the configuration as dict.
This method is used by print_config()
-
num_optimizers
= 1¶
-
abstract classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
print_config
(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>) → None[source]¶
-
abstract classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
-
class
espnet2.tasks.abs_task.
IteratorOptions
(preprocess_fn: <built-in function callable>, collate_fn: <built-in function callable>, data_path_and_name_and_type: list, shape_files: list, batch_size: int, batch_bins: int, batch_type: str, max_cache_size: float, max_cache_fd: int, distributed: bool, num_batches: Union[int, NoneType], num_iters_per_epoch: Union[int, NoneType], train: bool)[source]¶ Bases:
object
espnet2.tasks.enh_tse¶
-
class
espnet2.tasks.enh_tse.
TargetSpeakerExtractionTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.enh.espnet_model_tse.ESPnetExtractionModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.gan_svs¶
GAN-based Singing-voice-synthesis task.
-
class
espnet2.tasks.gan_svs.
GANSVSTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
GAN-based Singing-voice-synthesis task.
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.gan_svs.espnet_model.ESPnetGANSVSModel[source]¶
-
classmethod
build_optimizers
(args: argparse.Namespace, model: espnet2.gan_svs.espnet_model.ESPnetGANSVSModel) → List[torch.optim.optimizer.Optimizer][source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array], float], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 2¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.gan_trainer.GANTrainer
-
classmethod
espnet2.tasks.asr¶
-
class
espnet2.tasks.asr.
ASRTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Return “collate_fn”, which is a callable object and given to DataLoader.
>>> from torch.utils.data import DataLoader >>> loader = DataLoader(collate_fn=cls.build_collate_fn(args, train=True), ...)
In many cases, you can use our common collate_fn.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.asr.espnet_model.ESPnetASRModel[source]¶
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the optional names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as follows,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “optional_data_names” should be as
>>> optional_data_names = ('opt',)
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Define the required names by Task
This function is used by >>> cls.check_task_requirements() If your model is defined as following,
>>> from espnet2.train.abs_espnet_model import AbsESPnetModel >>> class Model(AbsESPnetModel): ... def forward(self, input, output, opt=None): pass
then “required_data_names” should be as
>>> required_data_names = ('input', 'output')
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod
espnet2.tasks.asr_transducer¶
ASR Transducer Task.
-
class
espnet2.tasks.asr_transducer.
ASRTransducerTask
[source]¶ Bases:
espnet2.tasks.abs_task.AbsTask
ASR Transducer Task definition.
-
classmethod
add_task_arguments
(parser: argparse.ArgumentParser)[source]¶ Add Transducer task arguments.
- Parameters:
cls – ASRTransducerTask object.
parser – Transducer arguments parser.
-
classmethod
build_collate_fn
(args: argparse.Namespace, train: bool) → Callable[[Collection[Tuple[str, Dict[str, numpy.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]]][source]¶ Build collate function.
- Parameters:
cls – ASRTransducerTask object.
args – Task arguments.
train – Training mode.
- Returns:
Callable collate function.
-
classmethod
build_model
(args: argparse.Namespace) → espnet2.asr_transducer.espnet_transducer_model.ESPnetASRTransducerModel[source]¶ Required data depending on task mode.
- Parameters:
cls – ASRTransducerTask object.
args – Task arguments.
- Returns:
ASR Transducer model.
- Return type:
model
-
classmethod
build_preprocess_fn
(args: argparse.Namespace, train: bool) → Optional[Callable[[str, Dict[str, numpy.array]], Dict[str, numpy.ndarray]]][source]¶ Build pre-processing function.
- Parameters:
cls – ASRTransducerTask object.
args – Task arguments.
train – Training mode.
- Returns:
Callable pre-processing function.
-
class_choices_list
= [<espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>, <espnet2.train.class_choices.ClassChoices object>]¶
-
num_optimizers
= 1¶
-
classmethod
optional_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Optional data depending on task mode.
- Parameters:
cls – ASRTransducerTask object.
train – Training mode.
inference – Inference mode.
- Returns:
Optional task data.
- Return type:
retval
-
classmethod
required_data_names
(train: bool = True, inference: bool = False) → Tuple[str, ...][source]¶ Required data depending on task mode.
- Parameters:
cls – ASRTransducerTask object.
train – Training mode.
inference – Inference mode.
- Returns:
Required task data.
- Return type:
retval
-
trainer
¶ alias of
espnet2.train.trainer.Trainer
-
classmethod