import argparse
import logging
from typing import Callable, Collection, Dict, List, Optional, Tuple
import numpy as np
import torch
from typeguard import check_argument_types, check_return_type
from espnet2.asr.ctc import CTC
from espnet2.asr.decoder.abs_decoder import AbsDecoder
from espnet2.asr.decoder.hugging_face_transformers_decoder import ( # noqa: H301
HuggingFaceTransformersDecoder,
)
from espnet2.asr.decoder.mlm_decoder import MLMDecoder
from espnet2.asr.decoder.rnn_decoder import RNNDecoder
from espnet2.asr.decoder.s4_decoder import S4Decoder
from espnet2.asr.decoder.transducer_decoder import TransducerDecoder
from espnet2.asr.decoder.transformer_decoder import (
DynamicConvolution2DTransformerDecoder,
DynamicConvolutionTransformerDecoder,
LightweightConvolution2DTransformerDecoder,
LightweightConvolutionTransformerDecoder,
TransformerDecoder,
)
from espnet2.asr.decoder.whisper_decoder import OpenAIWhisperDecoder
from espnet2.asr.encoder.abs_encoder import AbsEncoder
from espnet2.asr.encoder.branchformer_encoder import BranchformerEncoder
from espnet2.asr.encoder.conformer_encoder import ConformerEncoder
from espnet2.asr.encoder.contextual_block_conformer_encoder import (
ContextualBlockConformerEncoder,
)
from espnet2.asr.encoder.contextual_block_transformer_encoder import (
ContextualBlockTransformerEncoder,
)
from espnet2.asr.encoder.e_branchformer_encoder import EBranchformerEncoder
from espnet2.asr.encoder.hubert_encoder import (
FairseqHubertEncoder,
FairseqHubertPretrainEncoder,
TorchAudioHuBERTPretrainEncoder,
)
from espnet2.asr.encoder.longformer_encoder import LongformerEncoder
from espnet2.asr.encoder.rnn_encoder import RNNEncoder
from espnet2.asr.encoder.transformer_encoder import TransformerEncoder
from espnet2.asr.encoder.transformer_encoder_multispkr import (
TransformerEncoder as TransformerEncoderMultiSpkr,
)
from espnet2.asr.encoder.vgg_rnn_encoder import VGGRNNEncoder
from espnet2.asr.encoder.wav2vec2_encoder import FairSeqWav2Vec2Encoder
from espnet2.asr.encoder.whisper_encoder import OpenAIWhisperEncoder
from espnet2.asr.espnet_model import ESPnetASRModel
from espnet2.asr.frontend.abs_frontend import AbsFrontend
from espnet2.asr.frontend.default import DefaultFrontend
from espnet2.asr.frontend.fused import FusedFrontends
from espnet2.asr.frontend.s3prl import S3prlFrontend
from espnet2.asr.frontend.whisper import WhisperFrontend
from espnet2.asr.frontend.windowing import SlidingWindow
from espnet2.asr.maskctc_model import MaskCTCModel
from espnet2.asr.pit_espnet_model import ESPnetASRModel as PITESPnetModel
from espnet2.asr.postencoder.abs_postencoder import AbsPostEncoder
from espnet2.asr.postencoder.hugging_face_transformers_postencoder import (
HuggingFaceTransformersPostEncoder,
)
from espnet2.asr.preencoder.abs_preencoder import AbsPreEncoder
from espnet2.asr.preencoder.linear import LinearProjection
from espnet2.asr.preencoder.sinc import LightweightSincConvs
from espnet2.asr.specaug.abs_specaug import AbsSpecAug
from espnet2.asr.specaug.specaug import SpecAug
from espnet2.asr_transducer.joint_network import JointNetwork
from espnet2.layers.abs_normalize import AbsNormalize
from espnet2.layers.global_mvn import GlobalMVN
from espnet2.layers.utterance_mvn import UtteranceMVN
from espnet2.tasks.abs_task import AbsTask
from espnet2.text.phoneme_tokenizer import g2p_choices
from espnet2.torch_utils.initialize import initialize
from espnet2.train.abs_espnet_model import AbsESPnetModel
from espnet2.train.class_choices import ClassChoices
from espnet2.train.collate_fn import CommonCollateFn
from espnet2.train.preprocessor import (
AbsPreprocessor,
CommonPreprocessor,
CommonPreprocessor_multi,
)
from espnet2.train.trainer import Trainer
from espnet2.utils.get_default_kwargs import get_default_kwargs
from espnet2.utils.nested_dict_action import NestedDictAction
from espnet2.utils.types import float_or_none, int_or_none, str2bool, str_or_none
frontend_choices = ClassChoices(
name="frontend",
classes=dict(
default=DefaultFrontend,
sliding_window=SlidingWindow,
s3prl=S3prlFrontend,
fused=FusedFrontends,
whisper=WhisperFrontend,
),
type_check=AbsFrontend,
default="default",
)
specaug_choices = ClassChoices(
name="specaug",
classes=dict(
specaug=SpecAug,
),
type_check=AbsSpecAug,
default=None,
optional=True,
)
normalize_choices = ClassChoices(
"normalize",
classes=dict(
global_mvn=GlobalMVN,
utterance_mvn=UtteranceMVN,
),
type_check=AbsNormalize,
default="utterance_mvn",
optional=True,
)
model_choices = ClassChoices(
"model",
classes=dict(
espnet=ESPnetASRModel,
maskctc=MaskCTCModel,
pit_espnet=PITESPnetModel,
),
type_check=AbsESPnetModel,
default="espnet",
)
preencoder_choices = ClassChoices(
name="preencoder",
classes=dict(
sinc=LightweightSincConvs,
linear=LinearProjection,
),
type_check=AbsPreEncoder,
default=None,
optional=True,
)
encoder_choices = ClassChoices(
"encoder",
classes=dict(
conformer=ConformerEncoder,
transformer=TransformerEncoder,
transformer_multispkr=TransformerEncoderMultiSpkr,
contextual_block_transformer=ContextualBlockTransformerEncoder,
contextual_block_conformer=ContextualBlockConformerEncoder,
vgg_rnn=VGGRNNEncoder,
rnn=RNNEncoder,
wav2vec2=FairSeqWav2Vec2Encoder,
hubert=FairseqHubertEncoder,
hubert_pretrain=FairseqHubertPretrainEncoder,
torchaudiohubert=TorchAudioHuBERTPretrainEncoder,
longformer=LongformerEncoder,
branchformer=BranchformerEncoder,
whisper=OpenAIWhisperEncoder,
e_branchformer=EBranchformerEncoder,
),
type_check=AbsEncoder,
default="rnn",
)
postencoder_choices = ClassChoices(
name="postencoder",
classes=dict(
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
),
type_check=AbsPostEncoder,
default=None,
optional=True,
)
decoder_choices = ClassChoices(
"decoder",
classes=dict(
transformer=TransformerDecoder,
lightweight_conv=LightweightConvolutionTransformerDecoder,
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
dynamic_conv=DynamicConvolutionTransformerDecoder,
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
rnn=RNNDecoder,
transducer=TransducerDecoder,
mlm=MLMDecoder,
whisper=OpenAIWhisperDecoder,
hugging_face_transformers=HuggingFaceTransformersDecoder,
s4=S4Decoder,
),
type_check=AbsDecoder,
default=None,
optional=True,
)
preprocessor_choices = ClassChoices(
"preprocessor",
classes=dict(
default=CommonPreprocessor,
multi=CommonPreprocessor_multi,
),
type_check=AbsPreprocessor,
default="default",
)
[docs]class ASRTask(AbsTask):
# If you need more than one optimizers, change this value
num_optimizers: int = 1
# Add variable objects configurations
class_choices_list = [
# --frontend and --frontend_conf
frontend_choices,
# --specaug and --specaug_conf
specaug_choices,
# --normalize and --normalize_conf
normalize_choices,
# --model and --model_conf
model_choices,
# --preencoder and --preencoder_conf
preencoder_choices,
# --encoder and --encoder_conf
encoder_choices,
# --postencoder and --postencoder_conf
postencoder_choices,
# --decoder and --decoder_conf
decoder_choices,
# --preprocessor and --preprocessor_conf
preprocessor_choices,
]
# If you need to modify train() or eval() procedures, change Trainer class here
trainer = Trainer
[docs] @classmethod
def add_task_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(description="Task related")
# NOTE(kamo): add_arguments(..., required=True) can't be used
# to provide --print_config mode. Instead of it, do as
required = parser.get_default("required")
required += ["token_list"]
group.add_argument(
"--token_list",
type=str_or_none,
default=None,
help="A text mapping int-id to token",
)
group.add_argument(
"--init",
type=lambda x: str_or_none(x.lower()),
default=None,
help="The initialization method",
choices=[
"chainer",
"xavier_uniform",
"xavier_normal",
"kaiming_uniform",
"kaiming_normal",
None,
],
)
group.add_argument(
"--input_size",
type=int_or_none,
default=None,
help="The number of input dimension of the feature",
)
group.add_argument(
"--ctc_conf",
action=NestedDictAction,
default=get_default_kwargs(CTC),
help="The keyword arguments for CTC class.",
)
group.add_argument(
"--joint_net_conf",
action=NestedDictAction,
default=None,
help="The keyword arguments for joint network class.",
)
group = parser.add_argument_group(description="Preprocess related")
group.add_argument(
"--use_preprocessor",
type=str2bool,
default=True,
help="Apply preprocessing to data or not",
)
group.add_argument(
"--token_type",
type=str,
default="bpe",
choices=[
"bpe",
"char",
"word",
"phn",
"hugging_face",
"whisper_en",
"whisper_multilingual",
],
help="The text will be tokenized " "in the specified level token",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model file of sentencepiece",
)
parser.add_argument(
"--non_linguistic_symbols",
type=str_or_none,
help="non_linguistic_symbols file path",
)
group.add_argument(
"--cleaner",
type=str_or_none,
choices=[
None,
"tacotron",
"jaconv",
"vietnamese",
"whisper_en",
"whisper_basic",
],
default=None,
help="Apply text cleaning",
)
group.add_argument(
"--g2p",
type=str_or_none,
choices=g2p_choices,
default=None,
help="Specify g2p method if --token_type=phn",
)
group.add_argument(
"--speech_volume_normalize",
type=float_or_none,
default=None,
help="Scale the maximum amplitude to the given value.",
)
group.add_argument(
"--rir_scp",
type=str_or_none,
default=None,
help="The file path of rir scp file.",
)
group.add_argument(
"--rir_apply_prob",
type=float,
default=1.0,
help="THe probability for applying RIR convolution.",
)
group.add_argument(
"--noise_scp",
type=str_or_none,
default=None,
help="The file path of noise scp file.",
)
group.add_argument(
"--noise_apply_prob",
type=float,
default=1.0,
help="The probability applying Noise adding.",
)
group.add_argument(
"--noise_db_range",
type=str,
default="13_15",
help="The range of noise decibel level.",
)
group.add_argument(
"--short_noise_thres",
type=float,
default=0.5,
help="If len(noise) / len(speech) is smaller than this threshold during "
"dynamic mixing, a warning will be displayed.",
)
group.add_argument(
"--aux_ctc_tasks",
type=str,
nargs="+",
default=[],
help="Auxillary tasks to train on using CTC loss. ",
)
for class_choices in cls.class_choices_list:
# Append --<name> and --<name>_conf.
# e.g. --encoder and --encoder_conf
class_choices.add_arguments(group)
[docs] @classmethod
def build_collate_fn(
cls, args: argparse.Namespace, train: bool
) -> Callable[
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
Tuple[List[str], Dict[str, torch.Tensor]],
]:
assert check_argument_types()
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
[docs] @classmethod
def build_preprocess_fn(
cls, args: argparse.Namespace, train: bool
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
assert check_argument_types()
if args.use_preprocessor:
try:
_ = getattr(args, "preprocessor")
except AttributeError:
setattr(args, "preprocessor", "default")
setattr(args, "preprocessor_conf", dict())
except Exception as e:
raise e
preprocessor_class = preprocessor_choices.get_class(args.preprocessor)
retval = preprocessor_class(
train=train,
token_type=args.token_type,
token_list=args.token_list,
bpemodel=args.bpemodel,
non_linguistic_symbols=args.non_linguistic_symbols,
text_cleaner=args.cleaner,
g2p_type=args.g2p,
# NOTE(kamo): Check attribute existence for backward compatibility
rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
rir_apply_prob=args.rir_apply_prob
if hasattr(args, "rir_apply_prob")
else 1.0,
noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
noise_apply_prob=args.noise_apply_prob
if hasattr(args, "noise_apply_prob")
else 1.0,
noise_db_range=args.noise_db_range
if hasattr(args, "noise_db_range")
else "13_15",
short_noise_thres=args.short_noise_thres
if hasattr(args, "short_noise_thres")
else 0.5,
speech_volume_normalize=args.speech_volume_normalize
if hasattr(args, "rir_scp")
else None,
aux_task_names=args.aux_ctc_tasks
if hasattr(args, "aux_ctc_tasks")
else None,
**args.preprocessor_conf,
)
else:
retval = None
assert check_return_type(retval)
return retval
[docs] @classmethod
def required_data_names(
cls, train: bool = True, inference: bool = False
) -> Tuple[str, ...]:
if not inference:
retval = ("speech", "text")
else:
# Recognition mode
retval = ("speech",)
return retval
[docs] @classmethod
def optional_data_names(
cls, train: bool = True, inference: bool = False
) -> Tuple[str, ...]:
MAX_REFERENCE_NUM = 4
retval = ["text_spk{}".format(n) for n in range(2, MAX_REFERENCE_NUM + 1)]
retval = tuple(retval)
logging.info(f"Optional Data Names: {retval }")
assert check_return_type(retval)
return retval
[docs] @classmethod
def build_model(cls, args: argparse.Namespace) -> ESPnetASRModel:
assert check_argument_types()
if isinstance(args.token_list, str):
with open(args.token_list, encoding="utf-8") as f:
token_list = [line.rstrip() for line in f]
# Overwriting token_list to keep it as "portable".
args.token_list = list(token_list)
elif isinstance(args.token_list, (tuple, list)):
token_list = list(args.token_list)
else:
raise RuntimeError("token_list must be str or list")
# If use multi-blank transducer criterion,
# big blank symbols are added just before the standard blank
if args.model_conf.get("transducer_multi_blank_durations", None) is not None:
sym_blank = args.model_conf.get("sym_blank", "<blank>")
blank_idx = token_list.index(sym_blank)
for dur in args.model_conf.get("transducer_multi_blank_durations"):
if f"<blank{dur}>" not in token_list: # avoid this during inference
token_list.insert(blank_idx, f"<blank{dur}>")
args.token_list = token_list
vocab_size = len(token_list)
logging.info(f"Vocabulary size: {vocab_size }")
# 1. frontend
if args.input_size is None:
# Extract features in the model
frontend_class = frontend_choices.get_class(args.frontend)
frontend = frontend_class(**args.frontend_conf)
input_size = frontend.output_size()
else:
# Give features from data-loader
args.frontend = None
args.frontend_conf = {}
frontend = None
input_size = args.input_size
# 2. Data augmentation for spectrogram
if args.specaug is not None:
specaug_class = specaug_choices.get_class(args.specaug)
specaug = specaug_class(**args.specaug_conf)
else:
specaug = None
# 3. Normalization layer
if args.normalize is not None:
normalize_class = normalize_choices.get_class(args.normalize)
normalize = normalize_class(**args.normalize_conf)
else:
normalize = None
# 4. Pre-encoder input block
# NOTE(kan-bayashi): Use getattr to keep the compatibility
if getattr(args, "preencoder", None) is not None:
preencoder_class = preencoder_choices.get_class(args.preencoder)
preencoder = preencoder_class(**args.preencoder_conf)
input_size = preencoder.output_size()
else:
preencoder = None
# 4. Encoder
encoder_class = encoder_choices.get_class(args.encoder)
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
# 5. Post-encoder block
# NOTE(kan-bayashi): Use getattr to keep the compatibility
encoder_output_size = encoder.output_size()
if getattr(args, "postencoder", None) is not None:
postencoder_class = postencoder_choices.get_class(args.postencoder)
postencoder = postencoder_class(
input_size=encoder_output_size, **args.postencoder_conf
)
encoder_output_size = postencoder.output_size()
else:
postencoder = None
# 5. Decoder
if getattr(args, "decoder", None) is not None:
decoder_class = decoder_choices.get_class(args.decoder)
if args.decoder == "transducer":
decoder = decoder_class(
vocab_size,
embed_pad=0,
**args.decoder_conf,
)
joint_network = JointNetwork(
vocab_size,
encoder.output_size(),
decoder.dunits,
**args.joint_net_conf,
)
else:
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
**args.decoder_conf,
)
joint_network = None
else:
decoder = None
joint_network = None
# 6. CTC
ctc = CTC(
odim=vocab_size, encoder_output_size=encoder_output_size, **args.ctc_conf
)
# 7. Build model
try:
model_class = model_choices.get_class(args.model)
except AttributeError:
model_class = model_choices.get_class("espnet")
model = model_class(
vocab_size=vocab_size,
frontend=frontend,
specaug=specaug,
normalize=normalize,
preencoder=preencoder,
encoder=encoder,
postencoder=postencoder,
decoder=decoder,
ctc=ctc,
joint_network=joint_network,
token_list=token_list,
**args.model_conf,
)
# FIXME(kamo): Should be done in model?
# 8. Initialize
if args.init is not None:
initialize(model, args.init)
assert check_return_type(model)
return model