espnet2.hubert package¶
espnet2.hubert.hubert_loss¶
Hubert Pretrain Loss module.
-
class
espnet2.hubert.hubert_loss.
HubertPretrainLoss
(pred_masked_weight: float = 1.0, pred_nomask_weight: float = 0.0, loss_weights: float = 10.0)[source]¶ Bases:
torch.nn.modules.module.Module
Hubert criterion module.
- Parameters:
pred_masked_weight – weight for predictive loss for masked frames
pred_nomask_weight – weight for predictive loss for unmasked frames
loss_weights – weights for additional loss terms (not first one)
-
forward
(model, enc_outputs, reduce=True)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.espnet2.hubert.espnet_model¶
-
class
espnet2.hubert.espnet_model.
HubertPretrainModel
(vocab_size: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[espnet2.asr.frontend.abs_frontend.AbsFrontend], specaug: Optional[espnet2.asr.specaug.abs_specaug.AbsSpecAug], normalize: Optional[espnet2.layers.abs_normalize.AbsNormalize], preencoder: Optional[espnet2.asr.preencoder.abs_preencoder.AbsPreEncoder], encoder: espnet2.asr.encoder.abs_encoder.AbsEncoder, ignore_id: int = -1, lsm_weight: float = 0.0, length_normalized_loss: bool = False, report_cer: bool = False, report_wer: bool = False, sym_space: str = '<space>', sym_blank: str = '<blank>', pred_masked_weight: float = 1.0, pred_nomask_weight: float = 0.0, loss_weights: float = 0.0)[source]¶ Bases:
espnet2.train.abs_espnet_model.AbsESPnetModel
Hubert Pretrain model
-
collect_feats
(speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs) → Dict[str, torch.Tensor][source]¶
-
encode
(speech: torch.Tensor, speech_lengths: torch.Tensor, y_pad: torch.Tensor, y_pad_length: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]¶ Frontend + Encoder. Note that this method is used by asr_inference.py
- Parameters:
speech – (Batch, Length, …)
speech_lengths – (Batch, )
y_pad – (Batch, Length, …)
y_pad_length – (Batch, )
-
forward
(speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs) → Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor][source]¶ Frontend + Encoder + Calc loss
- Parameters:
speech – (Batch, Length, …)
speech_lengths – (Batch, )
text – (Batch, Length)
text_lengths – (Batch,)
kwargs – “utt_id” is among the input.
-
-
class
espnet2.hubert.espnet_model.
TorchAudioHubertPretrainModel
(vocab_size: int, token_list: Union[Tuple[str, ...], List[str]], frontend: Optional[espnet2.asr.frontend.abs_frontend.AbsFrontend], specaug: Optional[espnet2.asr.specaug.abs_specaug.AbsSpecAug], normalize: Optional[espnet2.layers.abs_normalize.AbsNormalize], preencoder: Optional[espnet2.asr.preencoder.abs_preencoder.AbsPreEncoder], encoder: espnet2.asr.encoder.abs_encoder.AbsEncoder, ignore_id: int = -1)[source]¶ Bases:
espnet2.train.abs_espnet_model.AbsESPnetModel
TorchAudio Hubert Pretrain model
-
collect_feats
(speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs) → Dict[str, torch.Tensor][source]¶
-
encode
(speech: torch.Tensor, speech_lengths: torch.Tensor, y_pad: torch.Tensor, y_pad_length: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]¶ Frontend + Encoder. Note that this method is used by asr_inference.py
- Parameters:
speech – (Batch, Length, …)
speech_lengths – (Batch, )
y_pad – (Batch, Length, …)
y_pad_length – (Batch, )
-
forward
(speech: torch.Tensor, speech_lengths: torch.Tensor, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs) → Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor][source]¶ Frontend + Encoder + Calc loss
- Parameters:
speech – (Batch, Length, …)
speech_lengths – (Batch, )
text – (Batch, Length)
text_lengths – (Batch,)
kwargs – “utt_id” is among the input.
-
espnet2.hubert.__init__¶
-
class