espnet2.samplers package¶
espnet2.samplers.unsorted_batch_sampler¶
-
class
espnet2.samplers.unsorted_batch_sampler.
UnsortedBatchSampler
(batch_size: int, key_file: str, drop_last: bool = False, utt2category_file: str = None)[source]¶ Bases:
espnet2.samplers.abs_sampler.AbsSampler
BatchSampler with constant batch-size.
Any sorting is not done in this class, so no length information is required, This class is convenient for decoding mode, or not seq2seq learning e.g. classification.
- Parameters:
batch_size –
key_file –
espnet2.samplers.abs_sampler¶
espnet2.samplers.num_elements_batch_sampler¶
espnet2.samplers.length_batch_sampler¶
espnet2.samplers.folded_batch_sampler¶
-
class
espnet2.samplers.folded_batch_sampler.
FoldedBatchSampler
(batch_size: int, shape_files: Union[Tuple[str, ...], List[str]], fold_lengths: Sequence[int], min_batch_size: int = 1, sort_in_batch: str = 'descending', sort_batch: str = 'ascending', drop_last: bool = False, utt2category_file: str = None)[source]¶
espnet2.samplers.__init__¶
espnet2.samplers.sorted_batch_sampler¶
-
class
espnet2.samplers.sorted_batch_sampler.
SortedBatchSampler
(batch_size: int, shape_file: str, sort_in_batch: str = 'descending', sort_batch: str = 'ascending', drop_last: bool = False)[source]¶ Bases:
espnet2.samplers.abs_sampler.AbsSampler
BatchSampler with sorted samples by length.
- Parameters:
batch_size –
shape_file –
sort_in_batch – ‘descending’, ‘ascending’ or None.
sort_batch –
espnet2.samplers.build_batch_sampler¶
-
espnet2.samplers.build_batch_sampler.
build_batch_sampler
(type: str, batch_size: int, batch_bins: int, shape_files: Union[Tuple[str, ...], List[str]], sort_in_batch: str = 'descending', sort_batch: str = 'ascending', drop_last: bool = False, min_batch_size: int = 1, fold_lengths: Sequence[int] = (), padding: bool = True, utt2category_file: str = None) → espnet2.samplers.abs_sampler.AbsSampler[source]¶ Helper function to instantiate BatchSampler.
- Parameters:
type – mini-batch type. “unsorted”, “sorted”, “folded”, “numel”, or, “length”
batch_size – The mini-batch size. Used for “unsorted”, “sorted”, “folded” mode
batch_bins – Used for “numel” model
shape_files – Text files describing the length and dimension of each features. e.g. uttA 1330,80
sort_in_batch –
sort_batch –
drop_last –
min_batch_size – Used for “numel” or “folded” mode
fold_lengths – Used for “folded” mode
padding – Whether sequences are input as a padded tensor or not. used for “numel” mode