Source code for espnet2.tasks.hubert

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Thanks to Abdelrahman Mohamed and Wei-Ning Hsu's help in this implementation,
# Their origial Hubert work is in:
#     Paper: https://arxiv.org/pdf/2106.07447.pdf
#     Code in Fairseq: https://github.com/pytorch/fairseq/tree/master/examples/hubert
import argparse
import logging
from typing import Callable, Collection, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
from typeguard import check_argument_types, check_return_type

from espnet2.asr.encoder.abs_encoder import AbsEncoder
from espnet2.asr.encoder.hubert_encoder import (  # noqa: H301
    FairseqHubertPretrainEncoder,
    TorchAudioHuBERTPretrainEncoder,
)
from espnet2.asr.frontend.abs_frontend import AbsFrontend
from espnet2.asr.frontend.default import DefaultFrontend
from espnet2.asr.frontend.windowing import SlidingWindow
from espnet2.asr.preencoder.abs_preencoder import AbsPreEncoder
from espnet2.asr.preencoder.sinc import LightweightSincConvs
from espnet2.asr.specaug.abs_specaug import AbsSpecAug
from espnet2.asr.specaug.specaug import SpecAug
from espnet2.hubert.espnet_model import (
    HubertPretrainModel,
    TorchAudioHubertPretrainModel,
)
from espnet2.layers.abs_normalize import AbsNormalize
from espnet2.layers.global_mvn import GlobalMVN
from espnet2.layers.utterance_mvn import UtteranceMVN
from espnet2.tasks.abs_task import AbsTask
from espnet2.text.phoneme_tokenizer import g2p_choices
from espnet2.torch_utils.initialize import initialize
from espnet2.train.abs_espnet_model import AbsESPnetModel
from espnet2.train.class_choices import ClassChoices
from espnet2.train.collate_fn import HuBERTCollateFn
from espnet2.train.preprocessor import CommonPreprocessor
from espnet2.train.trainer import Trainer
from espnet2.utils.nested_dict_action import NestedDictAction
from espnet2.utils.types import float_or_none, int_or_none, str2bool, str_or_none

frontend_choices = ClassChoices(
    name="frontend",
    classes=dict(default=DefaultFrontend, sliding_window=SlidingWindow),
    type_check=AbsFrontend,
    default="default",
)
specaug_choices = ClassChoices(
    name="specaug",
    classes=dict(specaug=SpecAug),
    type_check=AbsSpecAug,
    default=None,
    optional=True,
)
normalize_choices = ClassChoices(
    "normalize",
    classes=dict(
        global_mvn=GlobalMVN,
        utterance_mvn=UtteranceMVN,
    ),
    type_check=AbsNormalize,
    default="utterance_mvn",
    optional=True,
)
preencoder_choices = ClassChoices(
    name="preencoder",
    classes=dict(
        sinc=LightweightSincConvs,
    ),
    type_check=AbsPreEncoder,
    default=None,
    optional=True,
)
encoder_choices = ClassChoices(
    "encoder",
    classes=dict(
        hubert_pretrain=FairseqHubertPretrainEncoder,
        torchaudio_hubert=TorchAudioHuBERTPretrainEncoder,
    ),
    type_check=AbsEncoder,
    default="hubert_pretrain",
)
model_choices = ClassChoices(
    "model",
    classes=dict(
        fairseq=HubertPretrainModel,
        torchaudio=TorchAudioHubertPretrainModel,
    ),
    type_check=AbsESPnetModel,
    default="fairseq",
)


[docs]class HubertTask(AbsTask): # If you need more than one optimizers, change this value num_optimizers: int = 1 # Add variable objects configurations class_choices_list = [ # --frontend and --frontend_conf frontend_choices, # --specaug and --specaug_conf specaug_choices, # --normalize and --normalize_conf normalize_choices, # --preencoder and --preencoder_conf preencoder_choices, # --encoder and --encoder_conf encoder_choices, # --model and --model_conf model_choices, ] # If you need to modify train() or eval() procedures, change Trainer class here trainer = Trainer
[docs] @classmethod def add_task_arguments(cls, parser: argparse.ArgumentParser): group = parser.add_argument_group(description="Task related") # NOTE(kamo): add_arguments(..., required=True) can't be used # to provide --print_config mode. Instead of it, do as required = parser.get_default("required") required += ["token_list"] group.add_argument( "--token_list", type=str_or_none, default=None, help="A text mapping int-id to token", ) group.add_argument( "--init", type=lambda x: str_or_none(x.lower()), default=None, help="The initialization method", choices=[ "chainer", "xavier_uniform", "xavier_normal", "kaiming_uniform", "kaiming_normal", None, ], ) group.add_argument( "--collate_fn_conf", action=NestedDictAction, default=dict(), help="The keyword arguments for collate_fn class.", ) group.add_argument( "--input_size", type=int_or_none, default=None, help="The number of input dimension of the feature", ) group.add_argument( "--num_classes", type=int, default=None, help="The number of classes in hubert", ) group = parser.add_argument_group(description="Preprocess related") group.add_argument( "--use_preprocessor", type=str2bool, default=True, help="Apply preprocessing to data or not", ) group.add_argument( "--token_type", type=str, default="bpe", choices=["bpe", "char", "word", "phn"], help="The text will be tokenized " "in the specified level token", ) group.add_argument( "--bpemodel", type=str_or_none, default=None, help="The model file of sentencepiece", ) group.add_argument( "--non_linguistic_symbols", type=str_or_none, help="non_linguistic_symbols file path", ) group.add_argument( "--cleaner", type=str_or_none, choices=[None, "tacotron", "jaconv", "vietnamese"], default=None, help="Apply text cleaning", ) group.add_argument( "--g2p", type=str_or_none, choices=g2p_choices, default=None, help="Specify g2p method if --token_type=phn", ) group.add_argument( "--speech_volume_normalize", type=float_or_none, default=None, help="Scale the maximum amplitude to the given value.", ) group.add_argument( "--rir_scp", type=str_or_none, default=None, help="The file path of rir scp file.", ) group.add_argument( "--rir_apply_prob", type=float, default=1.0, help="THe probability for applying RIR convolution.", ) group.add_argument( "--noise_scp", type=str_or_none, default=None, help="The file path of noise scp file.", ) group.add_argument( "--noise_apply_prob", type=float, default=1.0, help="The probability applying Noise adding.", ) group.add_argument( "--noise_db_range", type=str, default="13_15", help="The range of noise decibel level.", ) parser.add_argument( "--pred_masked_weight", type=float, default=1.0, help="weight for predictive loss for masked frames", ) parser.add_argument( "--pred_nomask_weight", type=float, default=0.0, help="weight for predictive loss for unmasked frames", ) parser.add_argument( "--loss_weights", type=float, default=0.0, help="weights for additional loss terms (not first one)", ) for class_choices in cls.class_choices_list: # Append --<name> and --<name>_conf. # e.g. --encoder and --encoder_conf class_choices.add_arguments(group)
[docs] @classmethod def build_collate_fn( cls, args: argparse.Namespace, train: bool ) -> Callable[ [Collection[Tuple[str, Dict[str, np.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]], ]: assert check_argument_types() return HuBERTCollateFn( float_pad_value=0.0, int_pad_value=-1, label_downsampling=args.collate_fn_conf.get("label_downsampling", 1), pad=args.collate_fn_conf.get("pad", False), rand_crop=args.collate_fn_conf.get("rand_crop", True), crop_audio=not args.collect_stats, )
[docs] @classmethod def build_preprocess_fn( cls, args: argparse.Namespace, train: bool ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]: assert check_argument_types() if args.use_preprocessor: retval = CommonPreprocessor( train=train, token_type=args.token_type, token_list=args.token_list, bpemodel=args.bpemodel, non_linguistic_symbols=args.non_linguistic_symbols, text_cleaner=args.cleaner, g2p_type=args.g2p, # NOTE(kamo): Check attribute existence for backward compatibility rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None, rir_apply_prob=args.rir_apply_prob if hasattr(args, "rir_apply_prob") else 1.0, noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None, noise_apply_prob=args.noise_apply_prob if hasattr(args, "noise_apply_prob") else 1.0, noise_db_range=args.noise_db_range if hasattr(args, "noise_db_range") else "13_15", short_noise_thres=args.short_noise_thres if hasattr(args, "short_noise_thres") else 0.5, speech_volume_normalize=args.speech_volume_normalize if hasattr(args, "rir_scp") else None, ) else: retval = None assert check_return_type(retval) return retval
[docs] @classmethod def required_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: if not inference: retval = ("speech", "text") else: # Recognition mode retval = ("speech",) return retval
[docs] @classmethod def optional_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: retval = () assert check_return_type(retval) return retval
[docs] @classmethod def build_model( cls, args: argparse.Namespace ) -> Union[HubertPretrainModel, TorchAudioHubertPretrainModel]: assert check_argument_types() if isinstance(args.token_list, str): with open(args.token_list, encoding="utf-8") as f: token_list = [line.rstrip() for line in f] # Overwriting token_list to keep it as "portable". args.token_list = list(token_list) elif isinstance(args.token_list, (tuple, list)): token_list = list(args.token_list) else: raise RuntimeError("token_list must be str or list") vocab_size = len(token_list) logging.info(f"Vocabulary size: {vocab_size }") # 1. frontend if args.input_size is None: # Extract features in the model frontend_class = frontend_choices.get_class(args.frontend) frontend = frontend_class(**args.frontend_conf) input_size = frontend.output_size() else: # Give features from data-loader args.frontend = None args.frontend_conf = {} frontend = None input_size = args.input_size # 2. Data augmentation for spectrogram if args.specaug is not None: specaug_class = specaug_choices.get_class(args.specaug) specaug = specaug_class(**args.specaug_conf) else: specaug = None # 3. Normalization layer if args.normalize is not None: normalize_class = normalize_choices.get_class(args.normalize) normalize = normalize_class(**args.normalize_conf) else: normalize = None # 4. Pre-encoder input block # NOTE(kan-bayashi): Use getattr to keep the compatibility if getattr(args, "preencoder", None) is not None: preencoder_class = preencoder_choices.get_class(args.preencoder) preencoder = preencoder_class(**args.preencoder_conf) input_size = preencoder.output_size() else: preencoder = None # 4. Encoder encoder_class = encoder_choices.get_class(args.encoder) encoder = encoder_class( input_size=input_size, num_classes=args.num_classes, **args.encoder_conf, ) # 8. Build model try: model_class = model_choices.get_class(args.model) except AttributeError: model_class = model_choices.get_class("fairseq") model = model_class( vocab_size=vocab_size, frontend=frontend, specaug=specaug, normalize=normalize, preencoder=preencoder, encoder=encoder, token_list=token_list, **args.model_conf, ) # 9. Initialize if args.init is not None: initialize(model, args.init) assert check_return_type(model) return model