espnet.nets package

Initialize sub package.

espnet.nets.mt_interface

MT Interface module.

class espnet.nets.mt_interface.MTInterface[source]

Bases: object

MT Interface for ESPnet model implementation.

static add_arguments(parser)[source]

Add arguments to parser.

property attention_plot_class

Get attention plot class.

classmethod build(idim: int, odim: int, **kwargs)[source]

Initialize this class with python-level args.

Parameters:
  • idim (int) – The number of an input feature dim.

  • odim (int) – The number of output vocab.

Returns:

A new instance of ASRInterface.

Return type:

ASRinterface

calculate_all_attentions(xs, ilens, ys)[source]

Calculate attention.

Parameters:
  • xs (list) – list of padded input sequences [(T1, idim), (T2, idim), …]

  • ilens (ndarray) – batch of lengths of input sequences (B)

  • ys (list) – list of character id sequence tensor [(L1), (L2), (L3), …]

Returns:

attention weights (B, Lmax, Tmax)

Return type:

float ndarray

forward(xs, ilens, ys)[source]

Compute loss for training.

Parameters:
  • xs – For pytorch, batch of padded source sequences torch.Tensor (B, Tmax, idim) For chainer, list of source sequences chainer.Variable

  • ilens – batch of lengths of source sequences (B) For pytorch, torch.Tensor For chainer, list of int

  • ys – For pytorch, batch of padded source sequences torch.Tensor (B, Lmax) For chainer, list of source sequences chainer.Variable

Returns:

loss value

Return type:

torch.Tensor for pytorch, chainer.Variable for chainer

translate(x, trans_args, char_list=None, rnnlm=None)[source]

Translate x for evaluation.

Parameters:
  • x (ndarray) – input acouctic feature (B, T, D) or (T, D)

  • trans_args (namespace) – argment namespace contraining options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

translate_batch(x, trans_args, char_list=None, rnnlm=None)[source]

Beam search implementation for batch.

Parameters:
  • x (torch.Tensor) – encoder hidden state sequences (B, Tmax, Henc)

  • trans_args (namespace) – argument namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

espnet.nets.beam_search_timesync

Time Synchronous One-Pass Beam Search.

Implements joint CTC/attention decoding where hypotheses are expanded along the time (input) axis, as described in https://arxiv.org/abs/2210.05200. Supports CPU and GPU inference. References: https://arxiv.org/abs/1408.2873 for CTC beam search Author: Brian Yan

class espnet.nets.beam_search_timesync.BeamSearchTimeSync(sos: int, beam_size: int, scorers: Dict[str, espnet.nets.scorer_interface.ScorerInterface], weights: Dict[str, float], token_list=<class 'dict'>, pre_beam_ratio: float = 1.5, blank: int = 0, force_lid: bool = False, temp: float = 1.0)[source]

Bases: torch.nn.modules.module.Module

Time synchronous beam search algorithm.

Initialize beam search.

Parameters:
  • beam_size – num hyps

  • sos – sos index

  • ctc – CTC module

  • pre_beam_ratio – pre_beam_ratio * beam_size = pre_beam pre_beam is used to select candidates from vocab to extend hypotheses

  • decoder – decoder ScorerInterface

  • ctc_weight – ctc_weight

  • blank – blank index

cached_score(h: Tuple[int], cache: dict, scorer: espnet.nets.scorer_interface.ScorerInterface) → Any[source]

Retrieve decoder/LM scores which may be cached.

forward(x: torch.Tensor, maxlenratio: float = 0.0, minlenratio: float = 0.0) → List[espnet.nets.beam_search.Hypothesis][source]

Perform beam search.

Parameters:

enc_output (torch.Tensor) –

Returns:

list[Hypothesis]

joint_score(hyps: Any, ctc_score_dp: Any) → Any[source]

Calculate joint score for hyps.

reset(enc_output: torch.Tensor)[source]

Reset object for a new utterance.

time_step(p_ctc: Any, ctc_score_dp: Any, hyps: Any) → Any[source]

Execute a single time step.

class espnet.nets.beam_search_timesync.CacheItem(state: Any, scores: Any, log_sum: float)[source]

Bases: object

For caching attentional decoder and LM states.

espnet.nets.e2e_mt_common

Common functions for ST and MT.

class espnet.nets.e2e_mt_common.ErrorCalculator(char_list, sym_space, sym_pad, report_bleu=False)[source]

Bases: object

Calculate BLEU for ST and MT models during training.

Parameters:
  • y_hats – numpy array with predicted text

  • y_pads – numpy array with true (target) text

  • char_list – vocabulary list

  • sym_space – space symbol

  • sym_pad – pad symbol

  • report_bleu – report BLUE score if True

Construct an ErrorCalculator object.

calculate_corpus_bleu(ys_hat, ys_pad)[source]

Calculate corpus-level BLEU score in a mini-batch.

Parameters:
  • seqs_hat (torch.Tensor) – prediction (batch, seqlen)

  • seqs_true (torch.Tensor) – reference (batch, seqlen)

Returns:

corpus-level BLEU score

:rtype float

espnet.nets.scorer_interface

Scorer interface module.

class espnet.nets.scorer_interface.BatchPartialScorerInterface[source]

Bases: espnet.nets.scorer_interface.BatchScorerInterface, espnet.nets.scorer_interface.PartialScorerInterface

Batch partial scorer interface for beam search.

batch_score_partial(ys: torch.Tensor, next_tokens: torch.Tensor, states: List[Any], xs: torch.Tensor) → Tuple[torch.Tensor, Any][source]

Score new token (required).

Parameters:
  • ys (torch.Tensor) – torch.int64 prefix tokens (n_batch, ylen).

  • next_tokens (torch.Tensor) – torch.int64 tokens to score (n_batch, n_token).

  • states (List[Any]) – Scorer states for prefix tokens.

  • xs (torch.Tensor) – The encoder feature that generates ys (n_batch, xlen, n_feat).

Returns:

Tuple of a score tensor for ys that has a shape (n_batch, n_vocab) and next states for ys

Return type:

tuple[torch.Tensor, Any]

class espnet.nets.scorer_interface.BatchScorerInterface[source]

Bases: espnet.nets.scorer_interface.ScorerInterface

Batch scorer interface.

batch_init_state(x: torch.Tensor) → Any[source]

Get an initial state for decoding (optional).

Parameters:

x (torch.Tensor) – The encoded feature tensor

Returns: initial state

batch_score(ys: torch.Tensor, states: List[Any], xs: torch.Tensor) → Tuple[torch.Tensor, List[Any]][source]

Score new token batch (required).

Parameters:
  • ys (torch.Tensor) – torch.int64 prefix tokens (n_batch, ylen).

  • states (List[Any]) – Scorer states for prefix tokens.

  • xs (torch.Tensor) – The encoder feature that generates ys (n_batch, xlen, n_feat).

Returns:

Tuple of

batchfied scores for next token with shape of (n_batch, n_vocab) and next state list for ys.

Return type:

tuple[torch.Tensor, List[Any]]

class espnet.nets.scorer_interface.PartialScorerInterface[source]

Bases: espnet.nets.scorer_interface.ScorerInterface

Partial scorer interface for beam search.

The partial scorer performs scoring when non-partial scorer finished scoring, and receives pre-pruned next tokens to score because it is too heavy to score all the tokens.

Examples

score_partial(y: torch.Tensor, next_tokens: torch.Tensor, state: Any, x: torch.Tensor) → Tuple[torch.Tensor, Any][source]

Score new token (required).

Parameters:
  • y (torch.Tensor) – 1D prefix token

  • next_tokens (torch.Tensor) – torch.int64 next token to score

  • state – decoder state for prefix tokens

  • x (torch.Tensor) – The encoder feature that generates ys

Returns:

Tuple of a score tensor for y that has a shape (len(next_tokens),) and next state for ys

Return type:

tuple[torch.Tensor, Any]

class espnet.nets.scorer_interface.ScorerInterface[source]

Bases: object

Scorer interface for beam search.

The scorer performs scoring of the all tokens in vocabulary.

Examples

final_score(state: Any) → float[source]

Score eos (optional).

Parameters:

state – Scorer state for prefix tokens

Returns:

final score

Return type:

float

init_state(x: torch.Tensor) → Any[source]

Get an initial state for decoding (optional).

Parameters:

x (torch.Tensor) – The encoded feature tensor

Returns: initial state

score(y: torch.Tensor, state: Any, x: torch.Tensor) → Tuple[torch.Tensor, Any][source]

Score new token (required).

Parameters:
  • y (torch.Tensor) – 1D torch.int64 prefix tokens.

  • state – Scorer state for prefix tokens

  • x (torch.Tensor) – The encoder feature that generates ys.

Returns:

Tuple of

scores for next token that has a shape of (n_vocab) and next state for ys

Return type:

tuple[torch.Tensor, Any]

select_state(state: Any, i: int, new_id: int = None) → Any[source]

Select state with relative ids in the main beam search.

Parameters:
  • state – Decoder state for prefix tokens

  • i (int) – Index to select a state in the main beam search

  • new_id (int) – New label index to select a state if necessary

Returns:

pruned state

Return type:

state

espnet.nets.lm_interface

Language model interface.

class espnet.nets.lm_interface.LMInterface[source]

Bases: espnet.nets.scorer_interface.ScorerInterface

LM Interface for ESPnet model implementation.

static add_arguments(parser)[source]

Add arguments to command line argument parser.

classmethod build(n_vocab: int, **kwargs)[source]

Initialize this class with python-level args.

Parameters:

idim (int) – The number of vocabulary.

Returns:

A new instance of LMInterface.

Return type:

LMinterface

forward(x, t)[source]

Compute LM loss value from buffer sequences.

Parameters:
  • x (torch.Tensor) – Input ids. (batch, len)

  • t (torch.Tensor) – Target ids. (batch, len)

Returns:

Tuple of

loss to backward (scalar), negative log-likelihood of t: -log p(t) (scalar) and the number of elements in x (scalar)

Return type:

tuple[torch.Tensor, torch.Tensor, torch.Tensor]

Notes

The last two return values are used in perplexity: p(t)^{-n} = exp(-log p(t) / n)

espnet.nets.lm_interface.dynamic_import_lm(module, backend)[source]

Import LM class dynamically.

Parameters:
  • module (str) – module_name:class_name or alias in predefined_lms

  • backend (str) – NN backend. e.g., pytorch, chainer

Returns:

LM class

Return type:

type

espnet.nets.tts_interface

TTS Interface realted modules.

class espnet.nets.tts_interface.Reporter(**links)[source]

Bases: chainer.link.Chain

Reporter module.

report(dicts)[source]

Report values from a given dict.

class espnet.nets.tts_interface.TTSInterface[source]

Bases: object

TTS Interface for ESPnet model implementation.

Initilize TTS module.

static add_arguments(parser)[source]

Add model specific argments to parser.

property attention_plot_class

Plot attention weights.

property base_plot_keys

Return base key names to plot during training.

The keys should match what chainer.reporter reports. if you add the key loss, the reporter will report main/loss and validation/main/loss values. also loss.png will be created as a figure visulizing main/loss and validation/main/loss values.

Returns:

Base keys to plot during training.

Return type:

list[str]

calculate_all_attentions(*args, **kwargs)[source]

Calculate TTS attention weights.

Parameters:

Tensor – Batch of attention weights (B, Lmax, Tmax).

forward(*args, **kwargs)[source]

Calculate TTS forward propagation.

Returns:

Loss value.

Return type:

Tensor

inference(*args, **kwargs)[source]

Generate the sequence of features given the sequences of characters.

Returns:

The sequence of generated features (L, odim). Tensor: The sequence of stop probabilities (L,). Tensor: The sequence of attention weights (L, T).

Return type:

Tensor

load_pretrained_model(model_path)[source]

Load pretrained model parameters.

espnet.nets.asr_interface

ASR Interface module.

class espnet.nets.asr_interface.ASRInterface[source]

Bases: object

ASR Interface for ESPnet model implementation.

static add_arguments(parser)[source]

Add arguments to parser.

property attention_plot_class

Get attention plot class.

classmethod build(idim: int, odim: int, **kwargs)[source]

Initialize this class with python-level args.

Parameters:
  • idim (int) – The number of an input feature dim.

  • odim (int) – The number of output vocab.

Returns:

A new instance of ASRInterface.

Return type:

ASRinterface

calculate_all_attentions(xs, ilens, ys)[source]

Calculate attention.

Parameters:
  • xs (list) – list of padded input sequences [(T1, idim), (T2, idim), …]

  • ilens (ndarray) – batch of lengths of input sequences (B)

  • ys (list) – list of character id sequence tensor [(L1), (L2), (L3), …]

Returns:

attention weights (B, Lmax, Tmax)

Return type:

float ndarray

calculate_all_ctc_probs(xs, ilens, ys)[source]

Calculate CTC probability.

Parameters:
  • xs_pad (list) – list of padded input sequences [(T1, idim), (T2, idim), …]

  • ilens (ndarray) – batch of lengths of input sequences (B)

  • ys (list) – list of character id sequence tensor [(L1), (L2), (L3), …]

Returns:

CTC probabilities (B, Tmax, vocab)

Return type:

float ndarray

property ctc_plot_class

Get CTC plot class.

encode(feat)[source]

Encode feature in beam_search (optional).

Parameters:

x (numpy.ndarray) – input feature (T, D)

Returns:

encoded feature (T, D)

Return type:

torch.Tensor for pytorch, chainer.Variable for chainer

forward(xs, ilens, ys)[source]

Compute loss for training.

Parameters:
  • xs – For pytorch, batch of padded source sequences torch.Tensor (B, Tmax, idim) For chainer, list of source sequences chainer.Variable

  • ilens – batch of lengths of source sequences (B) For pytorch, torch.Tensor For chainer, list of int

  • ys – For pytorch, batch of padded source sequences torch.Tensor (B, Lmax) For chainer, list of source sequences chainer.Variable

Returns:

loss value

Return type:

torch.Tensor for pytorch, chainer.Variable for chainer

get_total_subsampling_factor()[source]

Get total subsampling factor.

recognize(x, recog_args, char_list=None, rnnlm=None)[source]

Recognize x for evaluation.

Parameters:
  • x (ndarray) – input acouctic feature (B, T, D) or (T, D)

  • recog_args (namespace) – argment namespace contraining options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

recognize_batch(x, recog_args, char_list=None, rnnlm=None)[source]

Beam search implementation for batch.

Parameters:
  • x (torch.Tensor) – encoder hidden state sequences (B, Tmax, Henc)

  • recog_args (namespace) – argument namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

scorers()[source]

Get scorers for beam_search (optional).

Returns:

dict of ScorerInterface objects

Return type:

dict[str, ScorerInterface]

espnet.nets.asr_interface.dynamic_import_asr(module, backend)[source]

Import ASR models dynamically.

Parameters:
  • module (str) – module_name:class_name or alias in predefined_asr

  • backend (str) – NN backend. e.g., pytorch, chainer

Returns:

ASR class

Return type:

type

espnet.nets.e2e_asr_common

Common functions for ASR.

class espnet.nets.e2e_asr_common.ErrorCalculator(char_list, sym_space, sym_blank, report_cer=False, report_wer=False)[source]

Bases: object

Calculate CER and WER for E2E_ASR and CTC models during training.

Parameters:
  • y_hats – numpy array with predicted text

  • y_pads – numpy array with true (target) text

  • char_list

  • sym_space

  • sym_blank

Returns:

Construct an ErrorCalculator object.

calculate_cer(seqs_hat, seqs_true)[source]

Calculate sentence-level CER score.

Parameters:
  • seqs_hat (list) – prediction

  • seqs_true (list) – reference

Returns:

average sentence-level CER score

:rtype float

calculate_cer_ctc(ys_hat, ys_pad)[source]

Calculate sentence-level CER score for CTC.

Parameters:
  • ys_hat (torch.Tensor) – prediction (batch, seqlen)

  • ys_pad (torch.Tensor) – reference (batch, seqlen)

Returns:

average sentence-level CER score

:rtype float

calculate_wer(seqs_hat, seqs_true)[source]

Calculate sentence-level WER score.

Parameters:
  • seqs_hat (list) – prediction

  • seqs_true (list) – reference

Returns:

average sentence-level WER score

:rtype float

convert_to_char(ys_hat, ys_pad)[source]

Convert index to character.

Parameters:
  • seqs_hat (torch.Tensor) – prediction (batch, seqlen)

  • seqs_true (torch.Tensor) – reference (batch, seqlen)

Returns:

token list of prediction

:rtype list :return: token list of reference :rtype list

espnet.nets.e2e_asr_common.end_detect(ended_hyps, i, M=3, D_end=-10.0)[source]

End detection.

described in Eq. (50) of S. Watanabe et al “Hybrid CTC/Attention Architecture for End-to-End Speech Recognition”

Parameters:
  • ended_hyps

  • i

  • M

  • D_end

Returns:

espnet.nets.e2e_asr_common.get_vgg2l_odim(idim, in_channel=3, out_channel=128)[source]

Return the output size of the VGG frontend.

Parameters:
  • in_channel – input channel size

  • out_channel – output channel size

Returns:

output size

:rtype int

espnet.nets.e2e_asr_common.label_smoothing_dist(odim, lsm_type, transcript=None, blank=0)[source]

Obtain label distribution for loss smoothing.

Parameters:
  • odim

  • lsm_type

  • blank

  • transcript

Returns:

espnet.nets.transducer_decoder_interface

Transducer decoder interface module.

class espnet.nets.transducer_decoder_interface.ExtendedHypothesis(score: float, yseq: List[int], dec_state: Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]], torch.Tensor], lm_state: Union[Dict[str, Any], List[Any]] = None, dec_out: List[torch.Tensor] = None, lm_scores: torch.Tensor = None)[source]

Bases: espnet.nets.transducer_decoder_interface.Hypothesis

Extended hypothesis definition for NSC beam search and mAES.

dec_out = None
lm_scores = None
class espnet.nets.transducer_decoder_interface.Hypothesis(score: float, yseq: List[int], dec_state: Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]], torch.Tensor], lm_state: Union[Dict[str, Any], List[Any]] = None)[source]

Bases: object

Default hypothesis definition for Transducer search algorithms.

lm_state = None
class espnet.nets.transducer_decoder_interface.TransducerDecoderInterface[source]

Bases: object

Decoder interface for Transducer models.

batch_score(hyps: Union[List[espnet.nets.transducer_decoder_interface.Hypothesis], List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis]], dec_states: Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]]], cache: Dict[str, Any], use_lm: bool) → Tuple[torch.Tensor, Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]]], torch.Tensor][source]

One-step forward hypotheses.

Parameters:
  • hyps – Hypotheses.

  • dec_states – Decoder hidden states.

  • cache – Pairs of (dec_out, dec_states) for each label sequence. (key)

  • use_lm – Whether to compute label ID sequences for LM.

Returns:

Decoder output sequences. dec_states: Decoder hidden states. lm_labels: Label ID sequences for LM.

Return type:

dec_out

create_batch_states(states: Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]]], new_states: List[Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]]]], l_tokens: List[List[int]]) → Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]]][source]

Create decoder hidden states.

Parameters:
  • batch_states – Batch of decoder states

  • l_states – List of decoder states

  • l_tokens – List of token sequences for input batch

Returns:

Batch of decoder states

Return type:

batch_states

init_state(batch_size: int) → Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]]][source]

Initialize decoder states.

Parameters:

batch_size – Batch size.

Returns:

Initial decoder hidden states.

Return type:

state

score(hyp: espnet.nets.transducer_decoder_interface.Hypothesis, cache: Dict[str, Any]) → Tuple[torch.Tensor, Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]]], torch.Tensor][source]

One-step forward hypothesis.

Parameters:
  • hyp – Hypothesis.

  • cache – Pairs of (dec_out, dec_state) for each token sequence. (key)

Returns:

Decoder output sequence. new_state: Decoder hidden states. lm_tokens: Label ID for LM.

Return type:

dec_out

select_state(batch_states: Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[torch.Tensor]], idx: int) → Union[Tuple[torch.Tensor, Optional[torch.Tensor]], List[Optional[torch.Tensor]]][source]

Get specified ID state from decoder hidden states.

Parameters:
  • batch_states – Decoder hidden states.

  • idx – State ID to extract.

Returns:

Decoder hidden state for given ID.

Return type:

state_idx

espnet.nets.beam_search

Beam search module.

class espnet.nets.beam_search.BeamSearch(scorers: Dict[str, espnet.nets.scorer_interface.ScorerInterface], weights: Dict[str, float], beam_size: int, vocab_size: int, sos: int, eos: int, token_list: List[str] = None, pre_beam_ratio: float = 1.5, pre_beam_score_key: str = None, hyp_primer: List[int] = None)[source]

Bases: torch.nn.modules.module.Module

Beam search implementation.

Initialize beam search.

Parameters:
  • scorers (dict[str, ScorerInterface]) – Dict of decoder modules e.g., Decoder, CTCPrefixScorer, LM The scorer will be ignored if it is None

  • weights (dict[str, float]) – Dict of weights for each scorers The scorer will be ignored if its weight is 0

  • beam_size (int) – The number of hypotheses kept during search

  • vocab_size (int) – The number of vocabulary

  • sos (int) – Start of sequence id

  • eos (int) – End of sequence id

  • token_list (list[str]) – List of tokens for debug log

  • pre_beam_score_key (str) – key of scores to perform pre-beam search

  • pre_beam_ratio (float) – beam size in the pre-beam search will be int(pre_beam_ratio * beam_size)

static append_token(xs: torch.Tensor, x: int) → torch.Tensor[source]

Append new token to prefix tokens.

Parameters:
  • xs (torch.Tensor) – The prefix token

  • x (int) – The new token to append

Returns:

New tensor contains: xs + [x] with xs.dtype and xs.device

Return type:

torch.Tensor

beam(weighted_scores: torch.Tensor, ids: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]

Compute topk full token ids and partial token ids.

Parameters:
  • weighted_scores (torch.Tensor) – The weighted sum scores for each tokens.

  • shape is ` (Its) –

  • ids (torch.Tensor) – The partial token ids to compute topk

Returns:

The topk full token ids and partial token ids. Their shapes are (self.beam_size,)

Return type:

Tuple[torch.Tensor, torch.Tensor]

forward(x: torch.Tensor, maxlenratio: float = 0.0, minlenratio: float = 0.0) → List[espnet.nets.beam_search.Hypothesis][source]

Perform beam search.

Parameters:
  • x (torch.Tensor) – Encoded speech feature (T, D)

  • maxlenratio (float) – Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths If maxlenratio<0.0, its absolute value is interpreted as a constant max output length.

  • minlenratio (float) – Input length ratio to obtain min output length. If minlenratio<0.0, its absolute value is interpreted as a constant min output length.

Returns:

N-best decoding results

Return type:

list[Hypothesis]

init_hyp(x: torch.Tensor) → List[espnet.nets.beam_search.Hypothesis][source]

Get an initial hypothesis data.

Parameters:

x (torch.Tensor) – The encoder output feature

Returns:

The initial hypothesis.

Return type:

Hypothesis

static merge_scores(prev_scores: Dict[str, float], next_full_scores: Dict[str, torch.Tensor], full_idx: int, next_part_scores: Dict[str, torch.Tensor], part_idx: int) → Dict[str, torch.Tensor][source]

Merge scores for new hypothesis.

Parameters:
  • prev_scores (Dict[str, float]) – The previous hypothesis scores by self.scorers

  • next_full_scores (Dict[str, torch.Tensor]) – scores by self.full_scorers

  • full_idx (int) – The next token id for next_full_scores

  • next_part_scores (Dict[str, torch.Tensor]) – scores of partial tokens by self.part_scorers

  • part_idx (int) – The new token id for next_part_scores

Returns:

The new score dict.

Its keys are names of self.full_scorers and self.part_scorers. Its values are scalar tensors by the scorers.

Return type:

Dict[str, torch.Tensor]

merge_states(states: Any, part_states: Any, part_idx: int) → Any[source]

Merge states for new hypothesis.

Parameters:
  • states – states of self.full_scorers

  • part_states – states of self.part_scorers

  • part_idx (int) – The new token id for part_scores

Returns:

The new score dict.

Its keys are names of self.full_scorers and self.part_scorers. Its values are states of the scorers.

Return type:

Dict[str, torch.Tensor]

post_process(i: int, maxlen: int, maxlenratio: float, running_hyps: List[espnet.nets.beam_search.Hypothesis], ended_hyps: List[espnet.nets.beam_search.Hypothesis]) → List[espnet.nets.beam_search.Hypothesis][source]

Perform post-processing of beam search iterations.

Parameters:
  • i (int) – The length of hypothesis tokens.

  • maxlen (int) – The maximum length of tokens in beam search.

  • maxlenratio (int) – The maximum length ratio in beam search.

  • running_hyps (List[Hypothesis]) – The running hypotheses in beam search.

  • ended_hyps (List[Hypothesis]) – The ended hypotheses in beam search.

Returns:

The new running hypotheses.

Return type:

List[Hypothesis]

score_full(hyp: espnet.nets.beam_search.Hypothesis, x: torch.Tensor) → Tuple[Dict[str, torch.Tensor], Dict[str, Any]][source]

Score new hypothesis by self.full_scorers.

Parameters:
  • hyp (Hypothesis) – Hypothesis with prefix tokens to score

  • x (torch.Tensor) – Corresponding input feature

Returns:

Tuple of

score dict of hyp that has string keys of self.full_scorers and tensor score values of shape: (self.n_vocab,), and state dict that has string keys and state values of self.full_scorers

Return type:

Tuple[Dict[str, torch.Tensor], Dict[str, Any]]

score_partial(hyp: espnet.nets.beam_search.Hypothesis, ids: torch.Tensor, x: torch.Tensor) → Tuple[Dict[str, torch.Tensor], Dict[str, Any]][source]

Score new hypothesis by self.part_scorers.

Parameters:
  • hyp (Hypothesis) – Hypothesis with prefix tokens to score

  • ids (torch.Tensor) – 1D tensor of new partial tokens to score

  • x (torch.Tensor) – Corresponding input feature

Returns:

Tuple of

score dict of hyp that has string keys of self.part_scorers and tensor score values of shape: (len(ids),), and state dict that has string keys and state values of self.part_scorers

Return type:

Tuple[Dict[str, torch.Tensor], Dict[str, Any]]

search(running_hyps: List[espnet.nets.beam_search.Hypothesis], x: torch.Tensor) → List[espnet.nets.beam_search.Hypothesis][source]

Search new tokens for running hypotheses and encoded speech x.

Parameters:
  • running_hyps (List[Hypothesis]) – Running hypotheses on beam

  • x (torch.Tensor) – Encoded speech feature (T, D)

Returns:

Best sorted hypotheses

Return type:

List[Hypotheses]

set_hyp_primer(hyp_primer: List[int] = None) → None[source]

Set the primer sequence for decoding.

Used for OpenAI Whisper models.

class espnet.nets.beam_search.Hypothesis[source]

Bases: tuple

Hypothesis data type.

Create new instance of Hypothesis(yseq, score, scores, states)

asdict() → dict[source]

Convert data to JSON-friendly dict.

score

Alias for field number 1

scores

Alias for field number 2

states

Alias for field number 3

yseq

Alias for field number 0

Perform beam search with scorers.

Parameters:
  • x (torch.Tensor) – Encoded speech feature (T, D)

  • sos (int) – Start of sequence id

  • eos (int) – End of sequence id

  • beam_size (int) – The number of hypotheses kept during search

  • vocab_size (int) – The number of vocabulary

  • scorers (dict[str, ScorerInterface]) – Dict of decoder modules e.g., Decoder, CTCPrefixScorer, LM The scorer will be ignored if it is None

  • weights (dict[str, float]) – Dict of weights for each scorers The scorer will be ignored if its weight is 0

  • token_list (list[str]) – List of tokens for debug log

  • maxlenratio (float) – Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths

  • minlenratio (float) – Input length ratio to obtain min output length.

  • pre_beam_score_key (str) – key of scores to perform pre-beam search

  • pre_beam_ratio (float) – beam size in the pre-beam search will be int(pre_beam_ratio * beam_size)

Returns:

N-best decoding results

Return type:

list

espnet.nets.beam_search_transducer

Search algorithms for Transducer models.

class espnet.nets.beam_search_transducer.BeamSearchTransducer(decoder: Union[espnet.nets.pytorch_backend.transducer.rnn_decoder.RNNDecoder, espnet.nets.pytorch_backend.transducer.custom_decoder.CustomDecoder], joint_network: espnet.nets.pytorch_backend.transducer.joint_network.JointNetwork, beam_size: int, lm: torch.nn.modules.module.Module = None, lm_weight: float = 0.1, search_type: str = 'default', max_sym_exp: int = 2, u_max: int = 50, nstep: int = 1, prefix_alpha: int = 1, expansion_gamma: int = 2.3, expansion_beta: int = 2, score_norm: bool = True, softmax_temperature: float = 1.0, nbest: int = 1, quantization: bool = False)[source]

Bases: object

Beam search implementation for Transducer.

Initialize Transducer search module.

Parameters:
  • decoder – Decoder module.

  • joint_network – Joint network module.

  • beam_size – Beam size.

  • lm – LM class.

  • lm_weight – LM weight for soft fusion.

  • search_type – Search algorithm to use during inference.

  • max_sym_exp – Number of maximum symbol expansions at each time step. (TSD)

  • u_max – Maximum output sequence length. (ALSD)

  • nstep – Number of maximum expansion steps at each time step. (NSC/mAES)

  • prefix_alpha – Maximum prefix length in prefix search. (NSC/mAES)

  • expansion_beta – Number of additional candidates for expanded hypotheses selection. (mAES)

  • expansion_gamma – Allowed logp difference for prune-by-value method. (mAES)

  • score_norm – Normalize final scores by length. (“default”)

  • softmax_temperature – Penalization term for softmax function.

  • nbest – Number of final hypothesis.

  • quantization – Whether dynamic quantization is used.

align_length_sync_decoding(enc_out: torch.Tensor) → List[espnet.nets.transducer_decoder_interface.Hypothesis][source]

Alignment-length synchronous beam search implementation.

Based on https://ieeexplore.ieee.org/document/9053040

Parameters:

h – Encoder output sequences. (T, D)

Returns:

N-best hypothesis.

Return type:

nbest_hyps

Beam search implementation.

Modified from https://arxiv.org/pdf/1211.3711.pdf

Parameters:

enc_out – Encoder output sequence. (T, D)

Returns:

N-best hypothesis.

Return type:

nbest_hyps

Greedy search implementation.

Parameters:

enc_out – Encoder output sequence. (T, D_enc)

Returns:

1-best hypotheses.

Return type:

hyp

It’s the modified Adaptive Expansion Search (mAES) implementation.

Based on/modified from https://ieeexplore.ieee.org/document/9250505 and NSC.

Parameters:

enc_out – Encoder output sequence. (T, D_enc)

Returns:

N-best hypothesis.

Return type:

nbest_hyps

N-step constrained beam search implementation.

Based on/Modified from https://arxiv.org/pdf/2002.03577.pdf. Please reference ESPnet (b-flo, PR #2444) for any usage outside ESPnet until further modifications.

Parameters:

enc_out – Encoder output sequence. (T, D_enc)

Returns:

N-best hypothesis.

Return type:

nbest_hyps

Prefix search for NSC and mAES strategies.

Based on https://arxiv.org/pdf/1211.3711.pdf

sort_nbest(hyps: Union[List[espnet.nets.transducer_decoder_interface.Hypothesis], List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis]]) → Union[List[espnet.nets.transducer_decoder_interface.Hypothesis], List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis]][source]

Sort hypotheses by score or score given sequence length.

Parameters:

hyps – Hypothesis.

Returns:

Sorted hypothesis.

Return type:

hyps

time_sync_decoding(enc_out: torch.Tensor) → List[espnet.nets.transducer_decoder_interface.Hypothesis][source]

Time synchronous beam search implementation.

Based on https://ieeexplore.ieee.org/document/9053040

Parameters:

enc_out – Encoder output sequence. (T, D)

Returns:

N-best hypothesis.

Return type:

nbest_hyps

espnet.nets.st_interface

ST Interface module.

class espnet.nets.st_interface.STInterface[source]

Bases: espnet.nets.asr_interface.ASRInterface

ST Interface for ESPnet model implementation.

NOTE: This class is inherited from ASRInterface to enable joint translation and recognition when performing multi-task learning with the ASR task.

translate(x, trans_args, char_list=None, rnnlm=None, ensemble_models=[])[source]

Recognize x for evaluation.

Parameters:
  • x (ndarray) – input acouctic feature (B, T, D) or (T, D)

  • trans_args (namespace) – argment namespace contraining options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

translate_batch(x, trans_args, char_list=None, rnnlm=None)[source]

Beam search implementation for batch.

Parameters:
  • x (torch.Tensor) – encoder hidden state sequences (B, Tmax, Henc)

  • trans_args (namespace) – argument namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

espnet.nets.st_interface.dynamic_import_st(module, backend)[source]

Import ST models dynamically.

Parameters:
  • module (str) – module_name:class_name or alias in predefined_st

  • backend (str) – NN backend. e.g., pytorch, chainer

Returns:

ST class

Return type:

type

espnet.nets.__init__

Initialize sub package.

espnet.nets.batch_beam_search_online_sim

Parallel beam search module for online simulation.

class espnet.nets.batch_beam_search_online_sim.BatchBeamSearchOnlineSim(scorers: Dict[str, espnet.nets.scorer_interface.ScorerInterface], weights: Dict[str, float], beam_size: int, vocab_size: int, sos: int, eos: int, token_list: List[str] = None, pre_beam_ratio: float = 1.5, pre_beam_score_key: str = None, hyp_primer: List[int] = None)[source]

Bases: espnet.nets.batch_beam_search.BatchBeamSearch

Online beam search implementation.

This simulates streaming decoding. It requires encoded features of entire utterance and extracts block by block from it as it shoud be done in streaming processing. This is based on Tsunoo et al, “STREAMING TRANSFORMER ASR WITH BLOCKWISE SYNCHRONOUS BEAM SEARCH” (https://arxiv.org/abs/2006.14941).

Initialize beam search.

Parameters:
  • scorers (dict[str, ScorerInterface]) – Dict of decoder modules e.g., Decoder, CTCPrefixScorer, LM The scorer will be ignored if it is None

  • weights (dict[str, float]) – Dict of weights for each scorers The scorer will be ignored if its weight is 0

  • beam_size (int) – The number of hypotheses kept during search

  • vocab_size (int) – The number of vocabulary

  • sos (int) – Start of sequence id

  • eos (int) – End of sequence id

  • token_list (list[str]) – List of tokens for debug log

  • pre_beam_score_key (str) – key of scores to perform pre-beam search

  • pre_beam_ratio (float) – beam size in the pre-beam search will be int(pre_beam_ratio * beam_size)

extend(x: torch.Tensor, hyps: espnet.nets.beam_search.Hypothesis) → List[espnet.nets.beam_search.Hypothesis][source]

Extend probabilities and states with more encoded chunks.

Parameters:
  • x (torch.Tensor) – The extended encoder output feature

  • hyps (Hypothesis) – Current list of hypothesis

Returns:

The extended hypothesis

Return type:

Hypothesis

forward(x: torch.Tensor, maxlenratio: float = 0.0, minlenratio: float = 0.0) → List[espnet.nets.beam_search.Hypothesis][source]

Perform beam search.

Parameters:
  • x (torch.Tensor) – Encoded speech feature (T, D)

  • maxlenratio (float) – Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths

  • minlenratio (float) – Input length ratio to obtain min output length.

Returns:

N-best decoding results

Return type:

list[Hypothesis]

set_block_size(block_size: int)[source]

Set block size for streaming decoding.

Parameters:

block_size (int) – The block size of encoder

set_hop_size(hop_size: int)[source]

Set hop size for streaming decoding.

Parameters:

hop_size (int) – The hop size of encoder

set_look_ahead(look_ahead: int)[source]

Set look ahead size for streaming decoding.

Parameters:

look_ahead (int) – The look ahead size of encoder

set_streaming_config(asr_config: str)[source]

Set config file for streaming decoding.

Parameters:

asr_config (str) – The config file for asr training

espnet.nets.batch_beam_search_online

Parallel beam search module for online simulation.

class espnet.nets.batch_beam_search_online.BatchBeamSearchOnline(*args, block_size=40, hop_size=16, look_ahead=16, disable_repetition_detection=False, encoded_feat_length_limit=0, decoder_text_length_limit=0, **kwargs)[source]

Bases: espnet.nets.batch_beam_search.BatchBeamSearch

Online beam search implementation.

This simulates streaming decoding. It requires encoded features of entire utterance and extracts block by block from it as it shoud be done in streaming processing. This is based on Tsunoo et al, “STREAMING TRANSFORMER ASR WITH BLOCKWISE SYNCHRONOUS BEAM SEARCH” (https://arxiv.org/abs/2006.14941).

Initialize beam search.

assemble_hyps(ended_hyps)[source]

Assemble the hypotheses.

extend(x: torch.Tensor, hyps: espnet.nets.beam_search.Hypothesis) → List[espnet.nets.beam_search.Hypothesis][source]

Extend probabilities and states with more encoded chunks.

Parameters:
  • x (torch.Tensor) – The extended encoder output feature

  • hyps (Hypothesis) – Current list of hypothesis

Returns:

The extended hypothesis

Return type:

Hypothesis

forward(x: torch.Tensor, maxlenratio: float = 0.0, minlenratio: float = 0.0, is_final: bool = True) → List[espnet.nets.beam_search.Hypothesis][source]

Perform beam search.

Parameters:
  • x (torch.Tensor) – Encoded speech feature (T, D)

  • maxlenratio (float) – Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths

  • minlenratio (float) – Input length ratio to obtain min output length.

Returns:

N-best decoding results

Return type:

list[Hypothesis]

process_one_block(h, is_final, maxlen, maxlenratio)[source]

Recognize one block.

reset()[source]

Reset parameters.

score_full(hyp: espnet.nets.batch_beam_search.BatchHypothesis, x: torch.Tensor) → Tuple[Dict[str, torch.Tensor], Dict[str, Any]][source]

Score new hypothesis by self.full_scorers.

Parameters:
  • hyp (Hypothesis) – Hypothesis with prefix tokens to score

  • x (torch.Tensor) – Corresponding input feature

Returns:

Tuple of

score dict of hyp that has string keys of self.full_scorers and tensor score values of shape: (self.n_vocab,), and state dict that has string keys and state values of self.full_scorers

Return type:

Tuple[Dict[str, torch.Tensor], Dict[str, Any]]

espnet.nets.ctc_prefix_score

class espnet.nets.ctc_prefix_score.CTCPrefixScore(x, blank, eos, xp)[source]

Bases: object

Compute CTC label sequence scores

which is based on Algorithm 2 in WATANABE et al. “HYBRID CTC/ATTENTION ARCHITECTURE FOR END-TO-END SPEECH RECOGNITION,” but extended to efficiently compute the probablities of multiple labels simultaneously

initial_state()[source]

Obtain an initial CTC state

Returns:

CTC state

class espnet.nets.ctc_prefix_score.CTCPrefixScoreTH(x, xlens, blank, eos, margin=0)[source]

Bases: object

Batch processing of CTCPrefixScore

which is based on Algorithm 2 in WATANABE et al. “HYBRID CTC/ATTENTION ARCHITECTURE FOR END-TO-END SPEECH RECOGNITION,” but extended to efficiently compute the label probablities for multiple hypotheses simultaneously See also Seki et al. “Vectorized Beam Search for CTC-Attention-Based Speech Recognition,” In INTERSPEECH (pp. 3825-3829), 2019.

Construct CTC prefix scorer

Parameters:
  • x (torch.Tensor) – input label posterior sequences (B, T, O)

  • xlens (torch.Tensor) – input lengths (B,)

  • blank (int) – blank label id

  • eos (int) – end-of-sequence id

  • margin (int) – margin parameter for windowing (0 means no windowing)

extend_prob(x)[source]

Extend CTC prob.

Parameters:

x (torch.Tensor) – input label posterior sequences (B, T, O)

extend_state(state)[source]

Compute CTC prefix state.

:param state : CTC state :return ctc_state

index_select_state(state, best_ids)[source]

Select CTC states according to best ids

:param state : CTC state :param best_ids : index numbers selected by beam pruning (B, W) :return selected_state

espnet.nets.batch_beam_search

Parallel beam search module.

class espnet.nets.batch_beam_search.BatchBeamSearch(scorers: Dict[str, espnet.nets.scorer_interface.ScorerInterface], weights: Dict[str, float], beam_size: int, vocab_size: int, sos: int, eos: int, token_list: List[str] = None, pre_beam_ratio: float = 1.5, pre_beam_score_key: str = None, hyp_primer: List[int] = None)[source]

Bases: espnet.nets.beam_search.BeamSearch

Batch beam search implementation.

Initialize beam search.

Parameters:
  • scorers (dict[str, ScorerInterface]) – Dict of decoder modules e.g., Decoder, CTCPrefixScorer, LM The scorer will be ignored if it is None

  • weights (dict[str, float]) – Dict of weights for each scorers The scorer will be ignored if its weight is 0

  • beam_size (int) – The number of hypotheses kept during search

  • vocab_size (int) – The number of vocabulary

  • sos (int) – Start of sequence id

  • eos (int) – End of sequence id

  • token_list (list[str]) – List of tokens for debug log

  • pre_beam_score_key (str) – key of scores to perform pre-beam search

  • pre_beam_ratio (float) – beam size in the pre-beam search will be int(pre_beam_ratio * beam_size)

batch_beam(weighted_scores: torch.Tensor, ids: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor][source]

Batch-compute topk full token ids and partial token ids.

Parameters:
  • weighted_scores (torch.Tensor) – The weighted sum scores for each tokens. Its shape is (n_beam, self.vocab_size).

  • ids (torch.Tensor) – The partial token ids to compute topk. Its shape is (n_beam, self.pre_beam_size).

Returns:

The topk full (prev_hyp, new_token) ids and partial (prev_hyp, new_token) ids. Their shapes are all (self.beam_size,)

Return type:

Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]

batchfy(hyps: List[espnet.nets.beam_search.Hypothesis]) → espnet.nets.batch_beam_search.BatchHypothesis[source]

Convert list to batch.

init_hyp(x: torch.Tensor) → espnet.nets.batch_beam_search.BatchHypothesis[source]

Get an initial hypothesis data.

Parameters:

x (torch.Tensor) – The encoder output feature

Returns:

The initial hypothesis.

Return type:

Hypothesis

merge_states(states: Any, part_states: Any, part_idx: int) → Any[source]

Merge states for new hypothesis.

Parameters:
  • states – states of self.full_scorers

  • part_states – states of self.part_scorers

  • part_idx (int) – The new token id for part_scores

Returns:

The new score dict.

Its keys are names of self.full_scorers and self.part_scorers. Its values are states of the scorers.

Return type:

Dict[str, torch.Tensor]

post_process(i: int, maxlen: int, maxlenratio: float, running_hyps: espnet.nets.batch_beam_search.BatchHypothesis, ended_hyps: List[espnet.nets.beam_search.Hypothesis]) → espnet.nets.batch_beam_search.BatchHypothesis[source]

Perform post-processing of beam search iterations.

Parameters:
  • i (int) – The length of hypothesis tokens.

  • maxlen (int) – The maximum length of tokens in beam search.

  • maxlenratio (int) – The maximum length ratio in beam search.

  • running_hyps (BatchHypothesis) – The running hypotheses in beam search.

  • ended_hyps (List[Hypothesis]) – The ended hypotheses in beam search.

Returns:

The new running hypotheses.

Return type:

BatchHypothesis

score_full(hyp: espnet.nets.batch_beam_search.BatchHypothesis, x: torch.Tensor) → Tuple[Dict[str, torch.Tensor], Dict[str, Any]][source]

Score new hypothesis by self.full_scorers.

Parameters:
  • hyp (Hypothesis) – Hypothesis with prefix tokens to score

  • x (torch.Tensor) – Corresponding input feature

Returns:

Tuple of

score dict of hyp that has string keys of self.full_scorers and tensor score values of shape: (self.n_vocab,), and state dict that has string keys and state values of self.full_scorers

Return type:

Tuple[Dict[str, torch.Tensor], Dict[str, Any]]

score_partial(hyp: espnet.nets.batch_beam_search.BatchHypothesis, ids: torch.Tensor, x: torch.Tensor) → Tuple[Dict[str, torch.Tensor], Dict[str, Any]][source]

Score new hypothesis by self.full_scorers.

Parameters:
  • hyp (Hypothesis) – Hypothesis with prefix tokens to score

  • ids (torch.Tensor) – 2D tensor of new partial tokens to score

  • x (torch.Tensor) – Corresponding input feature

Returns:

Tuple of

score dict of hyp that has string keys of self.full_scorers and tensor score values of shape: (self.n_vocab,), and state dict that has string keys and state values of self.full_scorers

Return type:

Tuple[Dict[str, torch.Tensor], Dict[str, Any]]

search(running_hyps: espnet.nets.batch_beam_search.BatchHypothesis, x: torch.Tensor) → espnet.nets.batch_beam_search.BatchHypothesis[source]

Search new tokens for running hypotheses and encoded speech x.

Parameters:
  • running_hyps (BatchHypothesis) – Running hypotheses on beam

  • x (torch.Tensor) – Encoded speech feature (T, D)

Returns:

Best sorted hypotheses

Return type:

BatchHypothesis

unbatchfy(batch_hyps: espnet.nets.batch_beam_search.BatchHypothesis) → List[espnet.nets.beam_search.Hypothesis][source]

Revert batch to list.

class espnet.nets.batch_beam_search.BatchHypothesis[source]

Bases: tuple

Batchfied/Vectorized hypothesis data type.

Create new instance of BatchHypothesis(yseq, score, length, scores, states)

length

Alias for field number 2

score

Alias for field number 1

scores

Alias for field number 3

states

Alias for field number 4

yseq

Alias for field number 0

espnet.nets.chainer_backend.e2e_asr_transformer

Transformer-based model for End-to-end ASR.

class espnet.nets.chainer_backend.e2e_asr_transformer.E2E(idim, odim, args, ignore_id=-1, flag_return=True)[source]

Bases: espnet.nets.chainer_backend.asr_interface.ChainerASRInterface

E2E module.

Parameters:
  • idim (int) – Input dimmensions.

  • odim (int) – Output dimmensions.

  • args (Namespace) – Training config.

  • ignore_id (int, optional) – Id for ignoring a character.

  • flag_return (bool, optional) – If true, return a list with (loss,

  • loss_att, acc) in forward. Otherwise, return loss. (loss_ctc,) –

Initialize the transformer.

static add_arguments(parser)[source]

Customize flags for transformer setup.

Parameters:

parser (Namespace) – Training config.

property attention_plot_class

Attention plot function.

Redirects to PlotAttentionReport

Returns:

PlotAttentionReport

calculate_all_attentions(xs, ilens, ys)[source]

E2E attention calculation.

Parameters:
  • xs (List[tuple()]) – List of padded input sequences. [(T1, idim), (T2, idim), …]

  • ilens (ndarray) – Batch of lengths of input sequences. (B)

  • ys (List) – List of character id sequence tensor. [(L1), (L2), (L3), …]

Returns:

Attention weights. (B, Lmax, Tmax)

Return type:

float ndarray

calculate_attentions(xs, x_mask, ys_pad)[source]

Calculate Attentions.

static custom_converter(subsampling_factor=0)[source]

Get customconverter of the model.

static custom_parallel_updater(iters, optimizer, converter, devices, accum_grad=1)[source]

Get custom_parallel_updater of the model.

static custom_updater(iters, optimizer, converter, device=-1, accum_grad=1)[source]

Get custom_updater of the model.

forward(xs, ilens, ys_pad, calculate_attentions=False)[source]

E2E forward propagation.

Parameters:
  • xs (chainer.Variable) – Batch of padded character ids. (B, Tmax)

  • ilens (chainer.Variable) – Batch of length of each input batch. (B,)

  • ys (chainer.Variable) – Batch of padded target features. (B, Lmax, odim)

  • calculate_attentions (bool) – If true, return value is the output of encoder.

Returns:

Training loss. float (optional): Training loss for ctc. float (optional): Training loss for attention. float (optional): Accuracy. chainer.Variable (Optional): Output of the encoder.

Return type:

float

get_total_subsampling_factor()[source]

Get total subsampling factor.

recognize(x_block, recog_args, char_list=None, rnnlm=None)[source]

E2E recognition function.

Parameters:
  • x (ndarray) – Input acouctic feature (B, T, D) or (T, D).

  • recog_args (Namespace) – Argment namespace contraining options.

  • char_list (List[str]) – List of characters.

  • rnnlm (chainer.Chain) – Language model module defined at

  • espnet.lm.chainer_backend.lm.

Returns:

N-best decoding results.

Return type:

List

recognize_beam(h, lpz, recog_args, char_list=None, rnnlm=None)[source]

E2E beam search.

Parameters:
  • h (ndarray) – Encoder output features (B, T, D) or (T, D).

  • lpz (ndarray) – Log probabilities from CTC.

  • recog_args (Namespace) – Argment namespace contraining options.

  • char_list (List[str]) – List of characters.

  • rnnlm (chainer.Chain) – Language model module defined at

  • espnet.lm.chainer_backend.lm.

Returns:

N-best decoding results.

Return type:

List

reset_parameters(args)[source]

Initialize the Weight according to the give initialize-type.

Parameters:

args (Namespace) – Transformer config.

espnet.nets.chainer_backend.ctc

class espnet.nets.chainer_backend.ctc.CTC(odim, eprojs, dropout_rate)[source]

Bases: chainer.link.Chain

Chainer implementation of ctc layer.

Parameters:
  • odim (int) – The output dimension.

  • eprojs (int | None) – Dimension of input vectors from encoder.

  • dropout_rate (float) – Dropout rate.

log_softmax(hs)[source]

Log_softmax of frame activations.

Parameters:

hs (list of chainer.Variable | N-dimension array) – Input variable from encoder.

Returns:

A n-dimension float array.

Return type:

chainer.Variable

espnet.nets.chainer_backend.ctc.ctc_for(args, odim)[source]

Return the CTC layer corresponding to the args.

Parameters:
  • args (Namespace) – The program arguments.

  • odim (int) – The output dimension.

Returns:

The CTC module.

espnet.nets.chainer_backend.asr_interface

ASR Interface module.

class espnet.nets.chainer_backend.asr_interface.ChainerASRInterface(**links)[source]

Bases: espnet.nets.asr_interface.ASRInterface, chainer.link.Chain

ASR Interface for ESPnet model implementation.

static custom_converter(*args, **kw)[source]

Get customconverter of the model (Chainer only).

static custom_parallel_updater(*args, **kw)[source]

Get custom_parallel_updater of the model (Chainer only).

static custom_updater(*args, **kw)[source]

Get custom_updater of the model (Chainer only).

get_total_subsampling_factor()[source]

Get total subsampling factor.

espnet.nets.chainer_backend.deterministic_embed_id

class espnet.nets.chainer_backend.deterministic_embed_id.EmbedID(in_size, out_size, initialW=None, ignore_label=None)[source]

Bases: chainer.link.Link

Efficient linear layer for one-hot input.

This is a link that wraps the embed_id() function. This link holds the ID (word) embedding matrix W as a parameter.

Parameters:
  • in_size (int) – Number of different identifiers (a.k.a. vocabulary size).

  • out_size (int) – Output dimension.

  • initialW (Initializer) – Initializer to initialize the weight.

  • ignore_label (int) – If ignore_label is an int value, i-th column of return value is filled with 0.

embed_id()

W

Embedding parameter matrix.

Type:

Variable

Examples

>>> W = np.array([[0, 0, 0],
...               [1, 1, 1],
...               [2, 2, 2]]).astype('f')
>>> W
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  1.],
       [ 2.,  2.,  2.]], dtype=float32)
>>> l = L.EmbedID(W.shape[0], W.shape[1], initialW=W)
>>> x = np.array([2, 1]).astype('i')
>>> x
array([2, 1], dtype=int32)
>>> y = l(x)
>>> y.data
array([[ 2.,  2.,  2.],
       [ 1.,  1.,  1.]], dtype=float32)
ignore_label = None
class espnet.nets.chainer_backend.deterministic_embed_id.EmbedIDFunction(ignore_label=None)[source]

Bases: chainer.function_node.FunctionNode

backward(indexes, grad_outputs)[source]

Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t. specified input variables. Note that this method does not need to compute any input gradients not specified by target_input_indices.

Unlike Function.backward(), gradients are given as Variable objects and this method itself has to return input gradients as Variable objects. It enables the function node to return the input gradients with the full computational history, in which case it supports differentiable backpropagation or higher-order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters:
  • target_input_indexes (tuple of int) – Sorted indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

  • grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns:

Tuple of variables that represent the gradients w.r.t. specified input variables. The length of the tuple can be same as either len(target_input_indexes) or the number of inputs. In the latter case, the elements not specified by target_input_indexes will be discarded.

See also

backward_accumulate() provides an alternative interface that allows you to implement the backward computation fused with the gradient accumulation.

check_type_forward(in_types)[source]

Checks types of input data before forward propagation.

This method is called before forward() and validates the types of input variables using the type checking utilities.

Parameters:

in_types (TypeInfoTuple) – The type information of input variables for forward().

forward(inputs)[source]

Computes the output arrays from the input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which of them this method selects is determined by the type of input arrays. Implementations of FunctionNode must implement either CPU/GPU methods or this method.

Parameters:

inputs – Tuple of input array(s).

Returns:

Tuple of output array(s).

Warning

Implementations of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

class espnet.nets.chainer_backend.deterministic_embed_id.EmbedIDGrad(w_shape, ignore_label=None)[source]

Bases: chainer.function_node.FunctionNode

backward(indexes, grads)[source]

Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t. specified input variables. Note that this method does not need to compute any input gradients not specified by target_input_indices.

Unlike Function.backward(), gradients are given as Variable objects and this method itself has to return input gradients as Variable objects. It enables the function node to return the input gradients with the full computational history, in which case it supports differentiable backpropagation or higher-order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters:
  • target_input_indexes (tuple of int) – Sorted indices of the input variables w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one element.

  • grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns:

Tuple of variables that represent the gradients w.r.t. specified input variables. The length of the tuple can be same as either len(target_input_indexes) or the number of inputs. In the latter case, the elements not specified by target_input_indexes will be discarded.

See also

backward_accumulate() provides an alternative interface that allows you to implement the backward computation fused with the gradient accumulation.

forward(inputs)[source]

Computes the output arrays from the input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which of them this method selects is determined by the type of input arrays. Implementations of FunctionNode must implement either CPU/GPU methods or this method.

Parameters:

inputs – Tuple of input array(s).

Returns:

Tuple of output array(s).

Warning

Implementations of FunctionNode must take care that the return value must be a tuple even if it returns only one array.

espnet.nets.chainer_backend.deterministic_embed_id.embed_id(x, W, ignore_label=None)[source]

Efficient linear function for one-hot input.

This function implements so called word embeddings. It takes two arguments: a set of IDs (words) x in \(B\) dimensional integer vector, and a set of all ID (word) embeddings W in \(V \\times d\) float32 matrix. It outputs \(B \\times d\) matrix whose i-th column is the x[i]-th column of W. This function is only differentiable on the input W.

Parameters:
  • x (chainer.Variable | np.ndarray) – Batch vectors of IDs. Each element must be signed integer.

  • W (chainer.Variable | np.ndarray) – Distributed representation of each ID (a.k.a. word embeddings).

  • ignore_label (int) – If ignore_label is an int value, i-th column of return value is filled with 0.

Returns:

Embedded variable.

Return type:

chainer.Variable

EmbedID

Examples

>>> x = np.array([2, 1]).astype('i')
>>> x
array([2, 1], dtype=int32)
>>> W = np.array([[0, 0, 0],
...               [1, 1, 1],
...               [2, 2, 2]]).astype('f')
>>> W
array([[ 0.,  0.,  0.],
       [ 1.,  1.,  1.],
       [ 2.,  2.,  2.]], dtype=float32)
>>> F.embed_id(x, W).data
array([[ 2.,  2.,  2.],
       [ 1.,  1.,  1.]], dtype=float32)
>>> F.embed_id(x, W, ignore_label=1).data
array([[ 2.,  2.,  2.],
       [ 0.,  0.,  0.]], dtype=float32)

espnet.nets.chainer_backend.e2e_asr

RNN sequence-to-sequence speech recognition model (chainer).

class espnet.nets.chainer_backend.e2e_asr.E2E(idim, odim, args, flag_return=True)[source]

Bases: espnet.nets.chainer_backend.asr_interface.ChainerASRInterface

E2E module for chainer backend.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • args (parser.args) – Training config.

  • flag_return (bool) – If True, train() would return additional metrics in addition to the training loss.

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

calculate_all_attentions(xs, ilens, ys)[source]

E2E attention calculation.

Parameters:
  • xs (List) – List of padded input sequences. [(T1, idim), (T2, idim), …]

  • ilens (np.ndarray) – Batch of lengths of input sequences. (B)

  • ys (List) – List of character id sequence tensor. [(L1), (L2), (L3), …]

Returns:

Attention weights. (B, Lmax, Tmax)

Return type:

float np.ndarray

static custom_converter(subsampling_factor=0)[source]

Get customconverter of the model.

static custom_parallel_updater(iters, optimizer, converter, devices, accum_grad=1)[source]

Get custom_parallel_updater of the model.

static custom_updater(iters, optimizer, converter, device=-1, accum_grad=1)[source]

Get custom_updater of the model.

forward(xs, ilens, ys)[source]

E2E forward propagation.

Parameters:
  • xs (chainer.Variable) – Batch of padded character ids. (B, Tmax)

  • ilens (chainer.Variable) – Batch of length of each input batch. (B,)

  • ys (chainer.Variable) – Batch of padded target features. (B, Lmax, odim)

Returns:

Loss that calculated by attention and ctc loss. float (optional): Ctc loss. float (optional): Attention loss. float (optional): Accuracy.

Return type:

float

get_total_subsampling_factor()[source]

Get total subsampling factor.

recognize(x, recog_args, char_list, rnnlm=None)[source]

E2E greedy/beam search.

Parameters:
  • x (chainer.Variable) – Input tensor for recognition.

  • recog_args (parser.args) – Arguments of config file.

  • char_list (List[str]) – List of Characters.

  • rnnlm (Module) – RNNLM module defined at espnet.lm.chainer_backend.lm.

Returns:

Result of recognition.

Return type:

List[Dict[str, Any]]

espnet.nets.chainer_backend.nets_utils

espnet.nets.chainer_backend.__init__

Initialize sub package.

espnet.nets.chainer_backend.transformer.encoder_layer

Class Declaration of Transformer’s Encoder Block.

class espnet.nets.chainer_backend.transformer.encoder_layer.EncoderLayer(n_units, d_units=0, h=8, dropout=0.1, initialW=None, initial_bias=None)[source]

Bases: chainer.link.Chain

Single encoder layer module.

Parameters:
  • n_units (int) – Number of input/output dimension of a FeedForward layer.

  • d_units (int) – Number of units of hidden layer in a FeedForward layer.

  • h (int) – Number of attention heads.

  • dropout (float) – Dropout rate

Initialize EncoderLayer.

forward(e, xx_mask, batch)[source]

Forward Positional Encoding.

espnet.nets.chainer_backend.transformer.encoder

Class Declaration of Transformer’s Encoder.

class espnet.nets.chainer_backend.transformer.encoder.Encoder(idim, attention_dim=256, attention_heads=4, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, attention_dropout_rate=0.0, input_layer='conv2d', pos_enc_class=<class 'espnet.nets.chainer_backend.transformer.embedding.PositionalEncoding'>, initialW=None, initial_bias=None)[source]

Bases: chainer.link.Chain

Encoder.

Parameters:
  • input_type (str) – Sampling type. input_type must be conv2d or ‘linear’ currently.

  • idim (int) – Dimension of inputs.

  • n_layers (int) – Number of encoder layers.

  • n_units (int) – Number of input/output dimension of a FeedForward layer.

  • d_units (int) – Number of units of hidden layer in a FeedForward layer.

  • h (int) – Number of attention heads.

  • dropout (float) – Dropout rate

Initialize Encoder.

Parameters:
  • idim (int) – Input dimension.

  • args (Namespace) – Training config.

  • initialW (int, optional) – Initializer to initialize the weight.

  • initial_bias (bool, optional) – Initializer to initialize the bias.

forward(e, ilens)[source]

Compute Encoder layer.

Parameters:
  • e (chainer.Variable) – Batch of padded character. (B, Tmax)

  • ilens (chainer.Variable) – Batch of length of each input batch. (B,)

Returns:

Computed variable of encoder. numpy.array: Mask. chainer.Variable: Batch of lengths of each encoder outputs.

Return type:

chainer.Variable

espnet.nets.chainer_backend.transformer.layer_norm

Class Declaration of Transformer’s Label Smootion loss.

class espnet.nets.chainer_backend.transformer.layer_norm.LayerNorm(dims, eps=1e-12)[source]

Bases: chainer.links.normalization.layer_normalization.LayerNormalization

Redirect to L.LayerNormalization.

Initialize LayerNorm.

espnet.nets.chainer_backend.transformer.ctc

Class Declaration of Transformer’s CTC.

class espnet.nets.chainer_backend.transformer.ctc.CTC(odim, eprojs, dropout_rate)[source]

Bases: chainer.link.Chain

Chainer implementation of ctc layer.

Parameters:
  • odim (int) – The output dimension.

  • eprojs (int | None) – Dimension of input vectors from encoder.

  • dropout_rate (float) – Dropout rate.

Initialize CTC.

log_softmax(hs)[source]

Log_softmax of frame activations.

Parameters:

hs (list of chainer.Variable | N-dimension array) – Input variable from encoder.

Returns:

A n-dimension float array.

Return type:

chainer.Variable

espnet.nets.chainer_backend.transformer.decoder_layer

Class Declaration of Transformer’s Decoder Block.

class espnet.nets.chainer_backend.transformer.decoder_layer.DecoderLayer(n_units, d_units=0, h=8, dropout=0.1, initialW=None, initial_bias=None)[source]

Bases: chainer.link.Chain

Single decoder layer module.

Parameters:
  • n_units (int) – Number of input/output dimension of a FeedForward layer.

  • d_units (int) – Number of units of hidden layer in a FeedForward layer.

  • h (int) – Number of attention heads.

  • dropout (float) – Dropout rate

Initialize DecoderLayer.

forward(e, s, xy_mask, yy_mask, batch)[source]

Compute Encoder layer.

Parameters:
  • e (chainer.Variable) – Batch of padded features. (B, Lmax)

  • s (chainer.Variable) – Batch of padded character. (B, Tmax)

Returns:

Computed variable of decoder.

Return type:

chainer.Variable

espnet.nets.chainer_backend.transformer.embedding

Class Declaration of Transformer’s Positional Encoding.

class espnet.nets.chainer_backend.transformer.embedding.PositionalEncoding(n_units, dropout=0.1, length=5000)[source]

Bases: chainer.link.Chain

Positional encoding module.

Parameters:
  • n_units (int) – embedding dim

  • dropout (float) – dropout rate

  • length (int) – maximum input length

Initialize Positional Encoding.

forward(e)[source]

Forward Positional Encoding.

espnet.nets.chainer_backend.transformer.positionwise_feed_forward

Class Declaration of Transformer’s Positionwise Feedforward.

class espnet.nets.chainer_backend.transformer.positionwise_feed_forward.PositionwiseFeedForward(n_units, d_units=0, dropout=0.1, initialW=None, initial_bias=None)[source]

Bases: chainer.link.Chain

Positionwise feed forward.

:param : param int idim: input dimenstion :param : param int hidden_units: number of hidden units :param : param float dropout_rate: dropout rate

Initialize PositionwiseFeedForward.

Parameters:
  • n_units (int) – Input dimension.

  • d_units (int, optional) – Output dimension of hidden layer.

  • dropout (float, optional) – Dropout ratio.

  • initialW (int, optional) – Initializer to initialize the weight.

  • initial_bias (bool, optional) – Initializer to initialize the bias.

espnet.nets.chainer_backend.transformer.label_smoothing_loss

Class Declaration of Transformer’s Label Smootion loss.

class espnet.nets.chainer_backend.transformer.label_smoothing_loss.LabelSmoothingLoss(smoothing, n_target_vocab, normalize_length=False, ignore_id=-1)[source]

Bases: chainer.link.Chain

Label Smoothing Loss.

Parameters:
  • smoothing (float) – smoothing rate (0.0 means the conventional CE).

  • n_target_vocab (int) – number of classes.

  • normalize_length (bool) – normalize loss by sequence length if True.

Initialize Loss.

forward(ys_block, ys_pad)[source]

Forward Loss.

Parameters:
  • ys_block (chainer.Variable) – Predicted labels.

  • ys_pad (chainer.Variable) – Target (true) labels.

Returns:

Training loss.

Return type:

float

espnet.nets.chainer_backend.transformer.attention

Class Declaration of Transformer’s Attention.

class espnet.nets.chainer_backend.transformer.attention.MultiHeadAttention(n_units, h=8, dropout=0.1, initialW=None, initial_bias=None)[source]

Bases: chainer.link.Chain

Multi Head Attention Layer.

Parameters:
  • n_units (int) – Number of input units.

  • h (int) – Number of attention heads.

  • dropout (float) – Dropout rate.

  • initialW – Initializer to initialize the weight.

  • initial_bias – Initializer to initialize the bias.

  • h – the number of heads

  • n_units – the number of features

  • dropout_rate (float) – dropout rate

Initialize MultiHeadAttention.

forward(e_var, s_var=None, mask=None, batch=1)[source]

Core function of the Multi-head attention layer.

Parameters:
  • e_var (chainer.Variable) – Variable of input array.

  • s_var (chainer.Variable) – Variable of source array from encoder.

  • mask (chainer.Variable) – Attention mask.

  • batch (int) – Batch size.

Returns:

Outout of multi-head attention layer.

Return type:

chainer.Variable

espnet.nets.chainer_backend.transformer.decoder

Class Declaration of Transformer’s Decoder.

class espnet.nets.chainer_backend.transformer.decoder.Decoder(odim, args, initialW=None, initial_bias=None)[source]

Bases: chainer.link.Chain

Decoder layer.

Parameters:
  • odim (int) – The output dimension.

  • n_layers (int) – Number of ecoder layers.

  • n_units (int) – Number of attention units.

  • d_units (int) – Dimension of input vector of decoder.

  • h (int) – Number of attention heads.

  • dropout (float) – Dropout rate.

  • initialW (Initializer) – Initializer to initialize the weight.

  • initial_bias (Initializer) – Initializer to initialize the bias.

Initialize Decoder.

forward(ys_pad, source, x_mask)[source]

Forward decoder.

Parameters:
  • e (xp.array) – input token ids, int64 (batch, maxlen_out)

  • yy_mask (xp.array) – input token mask, uint8 (batch, maxlen_out)

  • source (xp.array) – encoded memory, float32 (batch, maxlen_in, feat)

  • xy_mask (xp.array) – encoded memory mask, uint8 (batch, maxlen_in)

Return e:

decoded token score before softmax (batch, maxlen_out, token)

Return type:

chainer.Variable

make_attention_mask(source_block, target_block)[source]

Prepare the attention mask.

Parameters:
  • source_block (ndarray) – Source block with dimensions: (B x S).

  • target_block (ndarray) – Target block with dimensions: (B x T).

Returns:

Mask with dimensions (B, S, T).

Return type:

ndarray

recognize(e, yy_mask, source)[source]

Process recognition function.

espnet.nets.chainer_backend.transformer.__init__

Initialize sub package.

espnet.nets.chainer_backend.transformer.training

Class Declaration of Transformer’s Training Subprocess.

class espnet.nets.chainer_backend.transformer.training.CustomConverter[source]

Bases: object

Custom Converter.

Parameters:

subsampling_factor (int) – The subsampling factor.

Initialize subsampling.

class espnet.nets.chainer_backend.transformer.training.CustomParallelUpdater(train_iters, optimizer, converter, devices, accum_grad=1)[source]

Bases: chainer.training.updaters.multiprocess_parallel_updater.MultiprocessParallelUpdater

Custom Parallel Updater for chainer.

Defines the main update routine.

Parameters:
  • train_iter (iterator | dict[str, iterator]) – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.

  • optimizer (optimizer | dict[str, optimizer]) – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.

  • converter (espnet.asr.chainer_backend.asr.CustomConverter) – Converter function to build input arrays. Each batch extracted by the main iterator and the device option are passed to this function. chainer.dataset.concat_examples() is used by default.

  • device (torch.device) – Device to which the training data is sent. Negative value indicates the host memory (CPU).

  • accum_grad (int) – The number of gradient accumulation. if set to 2, the network parameters will be updated once in twice, i.e. actual batchsize will be doubled.

Initialize custom parallel updater.

update()[source]

Update step for Custom Parallel Updater.

update_core()[source]

Process main update routine for Custom Parallel Updater.

class espnet.nets.chainer_backend.transformer.training.CustomUpdater(train_iter, optimizer, converter, device, accum_grad=1)[source]

Bases: chainer.training.updaters.standard_updater.StandardUpdater

Custom updater for chainer.

Parameters:
  • train_iter (iterator | dict[str, iterator]) – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.

  • optimizer (optimizer | dict[str, optimizer]) – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.

  • converter (espnet.asr.chainer_backend.asr.CustomConverter) – Converter function to build input arrays. Each batch extracted by the main iterator and the device option are passed to this function. chainer.dataset.concat_examples() is used by default.

  • device (int or dict) – The destination device info to send variables. In the case of cpu or single gpu, device=-1 or 0, respectively. In the case of multi-gpu, device={“main”:0, “sub_1”: 1, …}.

  • accum_grad (int) – The number of gradient accumulation. if set to 2, the network parameters will be updated once in twice, i.e. actual batchsize will be doubled.

Initialize Custom Updater.

update()[source]

Update step for Custom Updater.

update_core()[source]

Process main update routine for Custom Updater.

class espnet.nets.chainer_backend.transformer.training.VaswaniRule(attr, d, warmup_steps=4000, init=None, target=None, optimizer=None, scale=1.0)[source]

Bases: chainer.training.extension.Extension

Trainer extension to shift an optimizer attribute magically by Vaswani.

Parameters:
  • attr (str) – Name of the attribute to shift.

  • rate (float) – Rate of the exponential shift. This value is multiplied to the attribute at each call.

  • init (float) – Initial value of the attribute. If it is None, the extension extracts the attribute at the first call and uses it as the initial value.

  • target (float) – Target value of the attribute. If the attribute reaches this value, the shift stops.

  • optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the main optimizer of the updater is used.

Initialize Vaswani rule extension.

initialize(trainer)[source]

Initialize Optimizer values.

serialize(serializer)[source]

Serialize extension.

espnet.nets.chainer_backend.transformer.training.sum_sqnorm(arr)[source]

Calculate the norm of the array.

Parameters:

arr (numpy.ndarray) –

Returns:

Sum of the norm calculated from the given array.

Return type:

Float

espnet.nets.chainer_backend.transformer.subsampling

Class Declaration of Transformer’s Input layers.

class espnet.nets.chainer_backend.transformer.subsampling.Conv2dSubsampling(channels, idim, dims, dropout=0.1, initialW=None, initial_bias=None)[source]

Bases: chainer.link.Chain

Convolutional 2D subsampling (to 1/4 length).

Parameters:
  • idim (int) – input dim

  • odim (int) – output dim

  • dropout_rate (flaot) – dropout rate

Initialize Conv2dSubsampling.

forward(xs, ilens)[source]

Subsample x.

Parameters:

x (chainer.Variable) – input tensor

Returns:

subsampled x and mask

class espnet.nets.chainer_backend.transformer.subsampling.LinearSampling(idim, dims, dropout=0.1, initialW=None, initial_bias=None)[source]

Bases: chainer.link.Chain

Linear 1D subsampling.

Parameters:
  • idim (int) – input dim

  • odim (int) – output dim

  • dropout_rate (flaot) – dropout rate

Initialize LinearSampling.

forward(xs, ilens)[source]

Subsample x.

Parameters:

x (chainer.Variable) – input tensor

Returns:

subsampled x and mask

espnet.nets.chainer_backend.transformer.mask

Create mask for subsequent steps.

espnet.nets.chainer_backend.transformer.mask.make_history_mask(xp, block)[source]

Prepare the history mask.

Parameters:

block (ndarray) – Block with dimensions: (B x S).

Returns:

History mask with dimensions (B, S, S).

Return type:

ndarray, np.ndarray

espnet.nets.chainer_backend.rnn.attentions

class espnet.nets.chainer_backend.rnn.attentions.AttDot(eprojs, dunits, att_dim)[source]

Bases: chainer.link.Chain

Compute attention based on dot product.

Parameters:
  • eprojs (int | None) – Dimension of input vectors from encoder.

  • dunits (int | None) – Dimension of input vectors for decoder.

  • att_dim (int) – Dimension of input vectors for attention.

reset()[source]

Reset states.

class espnet.nets.chainer_backend.rnn.attentions.AttLoc(eprojs, dunits, att_dim, aconv_chans, aconv_filts)[source]

Bases: chainer.link.Chain

Compute location-based attention.

Parameters:
  • eprojs (int | None) – Dimension of input vectors from encoder.

  • dunits (int | None) – Dimension of input vectors for decoder.

  • att_dim (int) – Dimension of input vectors for attention.

  • aconv_chans (int) – Number of channels of output arrays from convolutional layer.

  • aconv_filts (int) – Size of filters of convolutional layer.

reset()[source]

Reset states.

class espnet.nets.chainer_backend.rnn.attentions.NoAtt[source]

Bases: chainer.link.Chain

Compute non-attention layer.

This layer is a dummy attention layer to be compatible with other attention-based models.

reset()[source]

Reset states.

espnet.nets.chainer_backend.rnn.attentions.att_for(args)[source]

Returns an attention layer given the program arguments.

Parameters:

args (Namespace) – The arguments.

Returns:

The corresponding attention module.

Return type:

chainer.Chain

espnet.nets.chainer_backend.rnn.decoders

class espnet.nets.chainer_backend.rnn.decoders.Decoder(eprojs, odim, dtype, dlayers, dunits, sos, eos, att, verbose=0, char_list=None, labeldist=None, lsm_weight=0.0, sampling_probability=0.0)[source]

Bases: chainer.link.Chain

Decoder layer.

Parameters:
  • eprojs (int) – Dimension of input variables from encoder.

  • odim (int) – The output dimension.

  • dtype (str) – Decoder type.

  • dlayers (int) – Number of layers for decoder.

  • dunits (int) – Dimension of input vector of decoder.

  • sos (int) – Number to indicate the start of sequences.

  • eos (int) – Number to indicate the end of sequences.

  • att (Module) – Attention module defined at espnet.espnet.nets.chainer_backend.attentions.

  • verbose (int) – Verbosity level.

  • char_list (List[str]) – List of all characters.

  • labeldist (numpy.array) – Distributed array of counted transcript length.

  • lsm_weight (float) – Weight to use when calculating the training loss.

  • sampling_probability (float) – Threshold for scheduled sampling.

calculate_all_attentions(hs, ys)[source]

Calculate all of attentions.

Parameters:
  • hs (list of chainer.Variable | N-dimensional array) – Input variable from encoder.

  • ys (list of chainer.Variable | N-dimensional array) – Input variable of decoder.

Returns:

List of attention weights.

Return type:

chainer.Variable

recognize_beam(h, lpz, recog_args, char_list, rnnlm=None)[source]

Beam search implementation.

Parameters:
  • h (chainer.Variable) – One of the output from the encoder.

  • lpz (chainer.Variable | None) – Result of net propagation.

  • recog_args (Namespace) – The argument.

  • char_list (List[str]) – List of all characters.

  • rnnlm (Module) – RNNLM module. Defined at espnet.lm.chainer_backend.lm

Returns:

Result of recognition.

Return type:

List[Dict[str,Any]]

rnn_forward(ey, z_list, c_list, z_prev, c_prev)[source]
espnet.nets.chainer_backend.rnn.decoders.decoder_for(args, odim, sos, eos, att, labeldist)[source]

Return the decoding layer corresponding to the args.

Parameters:
  • args (Namespace) – The program arguments.

  • odim (int) – The output dimension.

  • sos (int) – Number to indicate the start of sequences.

  • eos (int) –

  • att (Module) – Attention module defined at espnet.nets.chainer_backend.attentions.

  • labeldist (numpy.array) – Distributed array of length od transcript.

Returns:

The decoder module.

Return type:

chainer.Chain

espnet.nets.chainer_backend.rnn.encoders

class espnet.nets.chainer_backend.rnn.encoders.Encoder(etype, idim, elayers, eunits, eprojs, subsample, dropout, in_channel=1)[source]

Bases: chainer.link.Chain

Encoder network class.

Parameters:
  • etype (str) – Type of encoder network.

  • idim (int) – Number of dimensions of encoder network.

  • elayers (int) – Number of layers of encoder network.

  • eunits (int) – Number of lstm units of encoder network.

  • eprojs (int) – Number of projection units of encoder network.

  • subsample (np.array) – Subsampling number. e.g. 1_2_2_2_1

  • dropout (float) – Dropout rate.

class espnet.nets.chainer_backend.rnn.encoders.RNN(idim, elayers, cdim, hdim, dropout, typ='lstm')[source]

Bases: chainer.link.Chain

RNN Module.

Parameters:
  • idim (int) – Dimension of the imput.

  • elayers (int) – Number of encoder layers.

  • cdim (int) – Number of rnn units.

  • hdim (int) – Number of projection units.

  • dropout (float) – Dropout rate.

  • typ (str) – Rnn type.

class espnet.nets.chainer_backend.rnn.encoders.RNNP(idim, elayers, cdim, hdim, subsample, dropout, typ='blstm')[source]

Bases: chainer.link.Chain

RNN with projection layer module.

Parameters:
  • idim (int) – Dimension of inputs.

  • elayers (int) – Number of encoder layers.

  • cdim (int) – Number of rnn units. (resulted in cdim * 2 if bidirectional)

  • hdim (int) – Number of projection units.

  • subsample (np.ndarray) – List to use sabsample the input array.

  • dropout (float) – Dropout rate.

  • typ (str) – The RNN type.

class espnet.nets.chainer_backend.rnn.encoders.VGG2L(in_channel=1)[source]

Bases: chainer.link.Chain

VGG motibated cnn layers.

Parameters:

in_channel (int) – Number of channels.

espnet.nets.chainer_backend.rnn.encoders.encoder_for(args, idim, subsample)[source]

Return the Encoder module.

Parameters:
  • idim (int) – Dimension of input array.

  • subsample (numpy.array) – Subsample number. egs).1_2_2_2_1

Return

chainer.nn.Module: Encoder module.

espnet.nets.chainer_backend.rnn.__init__

Initialize sub package.

espnet.nets.chainer_backend.rnn.training

class espnet.nets.chainer_backend.rnn.training.CustomConverter(subsampling_factor=1)[source]

Bases: object

Custom Converter.

Parameters:

subsampling_factor (int) – The subsampling factor.

class espnet.nets.chainer_backend.rnn.training.CustomParallelUpdater(train_iters, optimizer, converter, devices, accum_grad=1)[source]

Bases: chainer.training.updaters.multiprocess_parallel_updater.MultiprocessParallelUpdater

Custom Parallel Updater for chainer.

Defines the main update routine.

Parameters:
  • train_iter (iterator | dict[str, iterator]) – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.

  • optimizer (optimizer | dict[str, optimizer]) – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.

  • converter (espnet.asr.chainer_backend.asr.CustomConverter) – Converter function to build input arrays. Each batch extracted by the main iterator and the device option are passed to this function. chainer.dataset.concat_examples() is used by default.

  • device (torch.device) – Device to which the training data is sent. Negative value indicates the host memory (CPU).

  • accum_grad (int) – The number of gradient accumulation. if set to 2, the network parameters will be updated once in twice, i.e. actual batchsize will be doubled.

update()[source]

Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()[source]

Main Update routine of the custom parallel updater.

class espnet.nets.chainer_backend.rnn.training.CustomUpdater(train_iter, optimizer, converter, device, accum_grad=1)[source]

Bases: chainer.training.updaters.standard_updater.StandardUpdater

Custom updater for chainer.

Parameters:
  • train_iter (iterator | dict[str, iterator]) – Dataset iterator for the training dataset. It can also be a dictionary that maps strings to iterators. If this is just an iterator, then the iterator is registered by the name 'main'.

  • optimizer (optimizer | dict[str, optimizer]) – Optimizer to update parameters. It can also be a dictionary that maps strings to optimizers. If this is just an optimizer, then the optimizer is registered by the name 'main'.

  • converter (espnet.asr.chainer_backend.asr.CustomConverter) – Converter function to build input arrays. Each batch extracted by the main iterator and the device option are passed to this function. chainer.dataset.concat_examples() is used by default.

  • device (int or dict) – The destination device info to send variables. In the case of cpu or single gpu, device=-1 or 0, respectively. In the case of multi-gpu, device={“main”:0, “sub_1”: 1, …}.

  • accum_grad (int) – The number of gradient accumulation. if set to 2, the network parameters will be updated once in twice, i.e. actual batchsize will be doubled.

update()[source]

Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()[source]

Main update routine for Custom Updater.

espnet.nets.chainer_backend.rnn.training.sum_sqnorm(arr)[source]

Calculate the norm of the array.

Parameters:

arr (numpy.ndarray) –

Returns:

Sum of the norm calculated from the given array.

Return type:

Float

espnet.nets.scorers.ngram

Ngram lm implement.

class espnet.nets.scorers.ngram.NgramFullScorer(ngram_model, token_list)[source]

Bases: espnet.nets.scorers.ngram.Ngrambase, espnet.nets.scorer_interface.BatchScorerInterface

Fullscorer for ngram.

Initialize Ngrambase.

Parameters:
  • ngram_model – ngram model path

  • token_list – token list from dict or model.json

score(y, state, x)[source]

Score interface for both full and partial scorer.

Parameters:
  • y – previous char

  • state – previous state

  • x – encoded feature

Returns:

Tuple of

batchfied scores for next token with shape of (n_batch, n_vocab) and next state list for ys.

Return type:

tuple[torch.Tensor, List[Any]]

class espnet.nets.scorers.ngram.NgramPartScorer(ngram_model, token_list)[source]

Bases: espnet.nets.scorers.ngram.Ngrambase, espnet.nets.scorer_interface.PartialScorerInterface

Partialscorer for ngram.

Initialize Ngrambase.

Parameters:
  • ngram_model – ngram model path

  • token_list – token list from dict or model.json

score_partial(y, next_token, state, x)[source]

Score interface for both full and partial scorer.

Parameters:
  • y – previous char

  • next_token – next token need to be score

  • state – previous state

  • x – encoded feature

Returns:

Tuple of

batchfied scores for next token with shape of (n_batch, n_vocab) and next state list for ys.

Return type:

tuple[torch.Tensor, List[Any]]

select_state(state, i)[source]

Empty select state for scorer interface.

class espnet.nets.scorers.ngram.Ngrambase(ngram_model, token_list)[source]

Bases: abc.ABC

Ngram base implemented through ScorerInterface.

Initialize Ngrambase.

Parameters:
  • ngram_model – ngram model path

  • token_list – token list from dict or model.json

init_state(x)[source]

Initialize tmp state.

score_partial_(y, next_token, state, x)[source]

Score interface for both full and partial scorer.

Parameters:
  • y – previous char

  • next_token – next token need to be score

  • state – previous state

  • x – encoded feature

Returns:

Tuple of

batchfied scores for next token with shape of (n_batch, n_vocab) and next state list for ys.

Return type:

tuple[torch.Tensor, List[Any]]

espnet.nets.scorers.length_bonus

Length bonus module.

class espnet.nets.scorers.length_bonus.LengthBonus(n_vocab: int)[source]

Bases: espnet.nets.scorer_interface.BatchScorerInterface

Length bonus in beam search.

Initialize class.

Parameters:

n_vocab (int) – The number of tokens in vocabulary for beam search

batch_score(ys: torch.Tensor, states: List[Any], xs: torch.Tensor) → Tuple[torch.Tensor, List[Any]][source]

Score new token batch.

Parameters:
  • ys (torch.Tensor) – torch.int64 prefix tokens (n_batch, ylen).

  • states (List[Any]) – Scorer states for prefix tokens.

  • xs (torch.Tensor) – The encoder feature that generates ys (n_batch, xlen, n_feat).

Returns:

Tuple of

batchfied scores for next token with shape of (n_batch, n_vocab) and next state list for ys.

Return type:

tuple[torch.Tensor, List[Any]]

score(y, state, x)[source]

Score new token.

Parameters:
  • y (torch.Tensor) – 1D torch.int64 prefix tokens.

  • state – Scorer state for prefix tokens

  • x (torch.Tensor) – 2D encoder feature that generates ys.

Returns:

Tuple of

torch.float32 scores for next token (n_vocab) and None

Return type:

tuple[torch.Tensor, Any]

espnet.nets.scorers.ctc

ScorerInterface implementation for CTC.

class espnet.nets.scorers.ctc.CTCPrefixScorer(ctc: torch.nn.modules.module.Module, eos: int)[source]

Bases: espnet.nets.scorer_interface.BatchPartialScorerInterface

Decoder interface wrapper for CTCPrefixScore.

Initialize class.

Parameters:
batch_init_state(x: torch.Tensor)[source]

Get an initial state for decoding.

Parameters:

x (torch.Tensor) – The encoded feature tensor

Returns: initial state

batch_score_partial(y, ids, state, x)[source]

Score new token.

Parameters:
  • y (torch.Tensor) – 1D prefix token

  • ids (torch.Tensor) – torch.int64 next token to score

  • state – decoder state for prefix tokens

  • x (torch.Tensor) – 2D encoder feature that generates ys

Returns:

Tuple of a score tensor for y that has a shape (len(next_tokens),) and next state for ys

Return type:

tuple[torch.Tensor, Any]

extend_prob(x: torch.Tensor)[source]

Extend probs for decoding.

This extension is for streaming decoding as in Eq (14) in https://arxiv.org/abs/2006.14941

Parameters:

x (torch.Tensor) – The encoded feature tensor

extend_state(state)[source]

Extend state for decoding.

This extension is for streaming decoding as in Eq (14) in https://arxiv.org/abs/2006.14941

Parameters:

state – The states of hyps

Returns: exteded state

init_state(x: torch.Tensor)[source]

Get an initial state for decoding.

Parameters:

x (torch.Tensor) – The encoded feature tensor

Returns: initial state

score_partial(y, ids, state, x)[source]

Score new token.

Parameters:
  • y (torch.Tensor) – 1D prefix token

  • next_tokens (torch.Tensor) – torch.int64 next token to score

  • state – decoder state for prefix tokens

  • x (torch.Tensor) – 2D encoder feature that generates ys

Returns:

Tuple of a score tensor for y that has a shape (len(next_tokens),) and next state for ys

Return type:

tuple[torch.Tensor, Any]

select_state(state, i, new_id=None)[source]

Select state with relative ids in the main beam search.

Parameters:
  • state – Decoder state for prefix tokens

  • i (int) – Index to select a state in the main beam search

  • new_id (int) – New label id to select a state if necessary

Returns:

pruned state

Return type:

state

espnet.nets.scorers.uasr

ScorerInterface implementation for UASR.

class espnet.nets.scorers.uasr.UASRPrefixScorer(eos: int)[source]

Bases: espnet.nets.scorers.ctc.CTCPrefixScorer

Decoder interface wrapper for CTCPrefixScore.

Initialize class.

batch_init_state(x: torch.Tensor)[source]

Get an initial state for decoding.

Parameters:

x (torch.Tensor) – The encoded feature tensor

Returns: initial state

init_state(x: torch.Tensor)[source]

Get an initial state for decoding.

Parameters:

x (torch.Tensor) – The encoded feature tensor

Returns: initial state

espnet.nets.scorers.__init__

Initialize sub package.

espnet.nets.pytorch_backend.e2e_asr_mix

This script is used to construct End-to-End models of multi-speaker ASR.

Copyright 2017 Johns Hopkins University (Shinji Watanabe)

Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)

class espnet.nets.pytorch_backend.e2e_asr_mix.E2E(idim, odim, args)[source]

Bases: espnet.nets.asr_interface.ASRInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Initialize multi-speaker E2E module.

static add_arguments(parser)[source]

Add arguments.

calculate_all_attentions(xs_pad, ilens, ys_pad)[source]

E2E attention calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded character id sequence tensor (B, num_spkrs, Lmax)

Returns:

attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) other case => attention weights (B, Lmax, Tmax).

Return type:

float ndarray

static encoder_mix_add_arguments(parser)[source]

Add arguments for multi-speaker encoder.

enhance(xs)[source]

Forward only the frontend stage.

Parameters:

xs (ndarray) – input acoustic feature (T, C, F)

forward(xs_pad, ilens, ys_pad)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded character id sequence tensor (B, num_spkrs, Lmax)

Returns:

ctc loss value

Return type:

torch.Tensor

Returns:

attention loss value

Return type:

torch.Tensor

Returns:

accuracy in attention decoder

Return type:

float

get_total_subsampling_factor()[source]

Get total subsampling factor.

init_like_chainer()[source]

Initialize weight like chainer.

chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0 pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5)

however, there are two exceptions as far as I know. - EmbedID.W ~ Normal(0, 1) - LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)

recognize(x, recog_args, char_list, rnnlm=None)[source]

E2E beam search.

Parameters:
  • x (ndarray) – input acoustic feature (T, D)

  • recog_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

recognize_batch(xs, recog_args, char_list, rnnlm=None)[source]

E2E beam search.

Parameters:
  • xs (ndarray) – input acoustic feature (T, D)

  • recog_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

class espnet.nets.pytorch_backend.e2e_asr_mix.EncoderMix(etype, idim, elayers_sd, elayers_rec, eunits, eprojs, subsample, dropout, num_spkrs=2, in_channel=1)[source]

Bases: torch.nn.modules.module.Module

Encoder module for the case of multi-speaker mixture speech.

Parameters:
  • etype (str) – type of encoder network

  • idim (int) – number of dimensions of encoder network

  • elayers_sd (int) – number of layers of speaker differentiate part in encoder network

  • elayers_rec (int) – number of layers of shared recognition part in encoder network

  • eunits (int) – number of lstm units of encoder network

  • eprojs (int) – number of projection units of encoder network

  • subsample (np.ndarray) – list of subsampling numbers

  • dropout (float) – dropout rate

  • in_channel (int) – number of input channels

  • num_spkrs (int) – number of number of speakers

Initialize the encoder of single-channel multi-speaker ASR.

forward(xs_pad, ilens)[source]

Encodermix forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, D)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

Returns:

list: batch of hidden state sequences [num_spkrs x (B, Tmax, eprojs)]

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.e2e_asr_mix.PIT(num_spkrs)[source]

Bases: object

Permutation Invariant Training (PIT) module.

Parameters:

num_spkrs (int) – number of speakers for PIT process (2 or 3)

Initialize PIT module.

min_pit_sample(loss)[source]

Compute the PIT loss for each sample.

Parameters:

torch.Tensor loss (1-D) – list of losses for one sample, including [h1r1, h1r2, h2r1, h2r2] or [h1r1, h1r2, h1r3, h2r1, h2r2, h2r3, h3r1, h3r2, h3r3]

:return minimum loss of best permutation :rtype torch.Tensor (1) :return the best permutation :rtype List: len=2

permutationDFS(source, start)[source]

Get permutations with DFS.

The final result is all permutations of the ‘source’ sequence. e.g. [[1, 2], [2, 1]] or

[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]

Parameters:
  • source (np.ndarray) – (num_spkrs, 1), e.g. [1, 2, …, N]

  • start (int) – the start point to permute

pit_process(losses)[source]

Compute the PIT loss for a batch.

Parameters:

losses (torch.Tensor) – losses (B, 1|4|9)

:return minimum losses of a batch with best permutation :rtype torch.Tensor (B) :return the best permutation :rtype torch.LongTensor (B, 1|2|3)

espnet.nets.pytorch_backend.e2e_asr_mix.encoder_for(args, idim, subsample)[source]

Construct the encoder.

espnet.nets.pytorch_backend.e2e_vc_transformer

Voice Transformer Network (Transformer-VC) related modules.

class espnet.nets.pytorch_backend.e2e_vc_transformer.Transformer(idim, odim, args=None)[source]

Bases: espnet.nets.tts_interface.TTSInterface, torch.nn.modules.module.Module

VC Transformer module.

This is a module of the Voice Transformer Network (a.k.a. VTN or Transformer-VC) described in Voice Transformer Network: Sequence-to-Sequence Voice Conversion Using Transformer with Text-to-Speech Pretraining, which convert the sequence of acoustic features into the sequence of acoustic features.

Initialize Transformer-VC module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • args (Namespace, optional) –

    • eprenet_conv_layers (int):

      Number of encoder prenet convolution layers.

    • eprenet_conv_chans (int):

      Number of encoder prenet convolution channels.

    • eprenet_conv_filts (int):

      Filter size of encoder prenet convolution.

    • transformer_input_layer (str): Input layer before the encoder.

    • dprenet_layers (int): Number of decoder prenet layers.

    • dprenet_units (int): Number of decoder prenet hidden units.

    • elayers (int): Number of encoder layers.

    • eunits (int): Number of encoder hidden units.

    • adim (int): Number of attention transformation dimensions.

    • aheads (int): Number of heads for multi head attention.

    • dlayers (int): Number of decoder layers.

    • dunits (int): Number of decoder hidden units.

    • postnet_layers (int): Number of postnet layers.

    • postnet_chans (int): Number of postnet channels.

    • postnet_filts (int): Filter size of postnet.

    • use_scaled_pos_enc (bool):

      Whether to use trainable scaled positional encoding.

    • use_batch_norm (bool):

      Whether to use batch normalization in encoder prenet.

    • encoder_normalize_before (bool):

      Whether to perform layer normalization before encoder block.

    • decoder_normalize_before (bool):

      Whether to perform layer normalization before decoder block.

    • encoder_concat_after (bool): Whether to concatenate

      attention layer’s input and output in encoder.

    • decoder_concat_after (bool): Whether to concatenate

      attention layer’s input and output in decoder.

    • reduction_factor (int): Reduction factor (for decoder).

    • encoder_reduction_factor (int): Reduction factor (for encoder).

    • spk_embed_dim (int): Number of speaker embedding dimenstions.

    • spk_embed_integration_type: How to integrate speaker embedding.

    • transformer_init (float): How to initialize transformer parameters.

    • transformer_lr (float): Initial value of learning rate.

    • transformer_warmup_steps (int): Optimizer warmup steps.

    • transformer_enc_dropout_rate (float):

      Dropout rate in encoder except attention & positional encoding.

    • transformer_enc_positional_dropout_rate (float):

      Dropout rate after encoder positional encoding.

    • transformer_enc_attn_dropout_rate (float):

      Dropout rate in encoder self-attention module.

    • transformer_dec_dropout_rate (float):

      Dropout rate in decoder except attention & positional encoding.

    • transformer_dec_positional_dropout_rate (float):

      Dropout rate after decoder positional encoding.

    • transformer_dec_attn_dropout_rate (float):

      Dropout rate in deocoder self-attention module.

    • transformer_enc_dec_attn_dropout_rate (float):

      Dropout rate in encoder-deocoder attention module.

    • eprenet_dropout_rate (float): Dropout rate in encoder prenet.

    • dprenet_dropout_rate (float): Dropout rate in decoder prenet.

    • postnet_dropout_rate (float): Dropout rate in postnet.

    • use_masking (bool):

      Whether to apply masking for padded part in loss calculation.

    • use_weighted_masking (bool):

      Whether to apply weighted masking in loss calculation.

    • bce_pos_weight (float): Positive sample weight in bce calculation

      (only for use_masking=true).

    • loss_type (str): How to calculate loss.

    • use_guided_attn_loss (bool): Whether to use guided attention loss.

    • num_heads_applied_guided_attn (int):

      Number of heads in each layer to apply guided attention loss.

    • num_layers_applied_guided_attn (int):

      Number of layers to apply guided attention loss.

    • modules_applied_guided_attn (list):

      List of module names to apply guided attention loss.

    • guided-attn-loss-sigma (float) Sigma in guided attention loss.

    • guided-attn-loss-lambda (float): Lambda in guided attention loss.

static add_arguments(parser)[source]

Add model-specific arguments to the parser.

property attention_plot_class

Return plot class for attention weight plot.

property base_plot_keys

Return base key names to plot during training.

keys should match what chainer.reporter reports. If you add the key loss, the reporter will report main/loss

and validation/main/loss values.

also loss.png will be created as a figure visulizing main/loss

and validation/main/loss values.

Returns:

List of strings which are base keys to plot during training.

Return type:

list

calculate_all_attentions(xs, ilens, ys, olens, spembs=None, skip_output=False, keep_tensor=False, *args, **kwargs)[source]

Calculate all of the attention weights.

Parameters:
  • xs (Tensor) – Batch of padded acoustic features (B, Tmax, idim).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

  • skip_output (bool, optional) – Whether to skip calculate the final output.

  • keep_tensor (bool, optional) – Whether to keep original tensor.

Returns:

Dict of attention weights and outputs.

Return type:

dict

forward(xs, ilens, ys, labels, olens, spembs=None, *args, **kwargs)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of padded acoustic features (B, Tmax, idim).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

Returns:

Loss value.

Return type:

Tensor

inference(x, inference_args, spemb=None, *args, **kwargs)[source]

Generate the sequence of features given the sequences of acoustic features.

Parameters:
  • x (Tensor) – Input sequence of acoustic features (T, idim).

  • inference_args (Namespace) –

    • threshold (float): Threshold in inference.

    • minlenratio (float): Minimum length ratio in inference.

    • maxlenratio (float): Maximum length ratio in inference.

  • spemb (Tensor, optional) – Speaker embedding vector (spk_embed_dim).

Returns:

Output sequence of features (L, odim). Tensor: Output sequence of stop probabilities (L,). Tensor: Encoder-decoder (source) attention weights (#layers, #heads, L, T).

Return type:

Tensor

espnet.nets.pytorch_backend.e2e_asr_mulenc

Define e2e module for multi-encoder network. https://arxiv.org/pdf/1811.04903.pdf.

class espnet.nets.pytorch_backend.e2e_asr_mulenc.E2E(idims, odim, args)[source]

Bases: espnet.nets.asr_interface.ASRInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idims (List) – List of dimensions of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Initialize this class with python-level args.

Parameters:
  • idims (list) – list of the number of an input feature dim.

  • odim (int) – The number of output vocab.

  • args (Namespace) – arguments

static add_arguments(parser)[source]

Add arguments for multi-encoder setting.

static attention_add_arguments(parser)[source]

Add arguments for attentions in multi-encoder setting.

calculate_all_attentions(xs_pad_list, ilens_list, ys_pad)[source]

E2E attention calculation.

Parameters:
  • xs_pad_list (List) – list of batch (torch.Tensor) of padded input sequences [(B, Tmax_1, idim), (B, Tmax_2, idim),..]

  • ilens_list (List) – list of batch (torch.Tensor) of lengths of input sequences [(B), (B), ..]

  • ys_pad (torch.Tensor) – batch of padded character id sequence tensor (B, Lmax)

Returns:

attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) multi-encoder case

=> [(B, Lmax, Tmax1), (B, Lmax, Tmax2), …, (B, Lmax, NumEncs)]

  1. other case => attention weights (B, Lmax, Tmax).

Return type:

float ndarray or list

calculate_all_ctc_probs(xs_pad_list, ilens_list, ys_pad)[source]

E2E CTC probability calculation.

Parameters:
  • xs_pad_list (List) – list of batch (torch.Tensor) of padded input sequences [(B, Tmax_1, idim), (B, Tmax_2, idim),..]

  • ilens_list (List) – list of batch (torch.Tensor) of lengths of input sequences [(B), (B), ..]

  • ys_pad (torch.Tensor) – batch of padded character id sequence tensor (B, Lmax)

Returns:

CTC probability (B, Tmax, vocab)

Return type:

float ndarray or list

static ctc_add_arguments(parser)[source]

Add arguments for ctc in multi-encoder setting.

static decoder_add_arguments(parser)[source]

Add arguments for decoder in multi-encoder setting.

encode(x_list)[source]

Encode feature.

Parameters:

x_list (list) – input feature [(T1, D), (T2, D), … ]

Returns:

list

encoded feature [(T1, D), (T2, D), … ]

static encoder_add_arguments(parser)[source]

Add arguments for encoders in multi-encoder setting.

forward(xs_pad_list, ilens_list, ys_pad)[source]

E2E forward.

Parameters:
  • xs_pad_list (List) – list of batch (torch.Tensor) of padded input sequences [(B, Tmax_1, idim), (B, Tmax_2, idim),..]

  • ilens_list (List) – list of batch (torch.Tensor) of lengths of input sequences [(B), (B), ..]

  • ys_pad (torch.Tensor) – batch of padded character id sequence tensor (B, Lmax)

Returns:

loss value

Return type:

torch.Tensor

get_total_subsampling_factor()[source]

Get total subsampling factor.

init_like_chainer()[source]

Initialize weight like chainer.

chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0 pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5)

however, there are two exceptions as far as I know. - EmbedID.W ~ Normal(0, 1) - LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)

recognize(x_list, recog_args, char_list, rnnlm=None)[source]

E2E beam search.

Parameters:
  • of ndarray x (list) – list of input acoustic feature [(T1, D), (T2,D),…]

  • recog_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

recognize_batch(xs_list, recog_args, char_list, rnnlm=None)[source]

E2E beam search.

Parameters:
  • xs_list (list) – list of list of input acoustic feature arrays [[(T1_1, D), (T1_2, D), …],[(T2_1, D), (T2_2, D), …], …]

  • recog_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

scorers()[source]

Get scorers for beam_search (optional).

Returns:

dict of ScorerInterface objects

Return type:

dict[str, ScorerInterface]

class espnet.nets.pytorch_backend.e2e_asr_mulenc.Reporter(**links)[source]

Bases: chainer.link.Chain

Define a chainer reporter wrapper.

report(loss_ctc_list, loss_att, acc, cer_ctc_list, cer, wer, mtl_loss)[source]

Define a chainer reporter function.

espnet.nets.pytorch_backend.e2e_mt_transformer

Transformer text translation model (pytorch).

class espnet.nets.pytorch_backend.e2e_mt_transformer.E2E(idim, odim, args, ignore_id=-1)[source]

Bases: espnet.nets.mt_interface.MTInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

property attention_plot_class

Return PlotAttentionReport.

calculate_all_attentions(xs_pad, ilens, ys_pad)[source]

E2E attention calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

attention weights (B, H, Lmax, Tmax)

Return type:

float ndarray

encode(xs)[source]

Encode source sentences.

forward(xs_pad, ilens, ys_pad)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax)

  • ilens (torch.Tensor) – batch of lengths of source sequences (B)

  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

Return type:

torch.Tensor

Returns:

attention loss value

Return type:

torch.Tensor

Returns:

accuracy in attention decoder

Return type:

float

reset_parameters(args)[source]

Initialize parameters.

scorers()[source]

Scorers.

target_forcing(xs_pad, ys_pad=None, tgt_lang=None)[source]

Prepend target language IDs to source sentences for multilingual MT.

These tags are prepended in source/target sentences as pre-processing.

Parameters:

xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax)

Returns:

source text without language IDs

Return type:

torch.Tensor

Returns:

target text without language IDs

Return type:

torch.Tensor

Returns:

target language IDs

Return type:

torch.Tensor (B, 1)

translate(x, trans_args, char_list=None)[source]

Translate source text.

Parameters:
  • x (list) – input source text feature (T,)

  • trans_args (Namespace) – argment Namespace contraining options

  • char_list (list) – list of characters

Returns:

N-best decoding results

Return type:

list

espnet.nets.pytorch_backend.e2e_asr_transformer

Transformer speech recognition model (pytorch).

class espnet.nets.pytorch_backend.e2e_asr_transformer.E2E(idim, odim, args, ignore_id=-1)[source]

Bases: espnet.nets.asr_interface.ASRInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

property attention_plot_class

Return PlotAttentionReport.

calculate_all_attentions(xs_pad, ilens, ys_pad)[source]

E2E attention calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

attention weights (B, H, Lmax, Tmax)

Return type:

float ndarray

calculate_all_ctc_probs(xs_pad, ilens, ys_pad)[source]

E2E CTC probability calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

CTC probability (B, Tmax, vocab)

Return type:

float ndarray

encode(x)[source]

Encode acoustic features.

Parameters:

x (ndarray) – source acoustic feature (T, D)

Returns:

encoder outputs

Return type:

torch.Tensor

forward(xs_pad, ilens, ys_pad)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of source sequences (B)

  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

Returns:

ctc loss value

Return type:

torch.Tensor

Returns:

attention loss value

Return type:

torch.Tensor

Returns:

accuracy in attention decoder

Return type:

float

get_total_subsampling_factor()[source]

Get total subsampling factor.

recognize(x, recog_args, char_list=None, rnnlm=None, use_jit=False)[source]

Recognize input speech.

Parameters:
  • x (ndnarray) – input acoustic feature (B, T, D) or (T, D)

  • recog_args (Namespace) – argment Namespace contraining options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

reset_parameters(args)[source]

Initialize parameters.

scorers()[source]

Scorers.

espnet.nets.pytorch_backend.e2e_asr_maskctc

Mask CTC based non-autoregressive speech recognition model (pytorch).

See https://arxiv.org/abs/2005.08700 for the detail.

class espnet.nets.pytorch_backend.e2e_asr_maskctc.E2E(idim, odim, args, ignore_id=-1)[source]

Bases: espnet.nets.pytorch_backend.e2e_asr_transformer.E2E

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

static add_maskctc_arguments(parser)[source]

Add arguments for maskctc model.

forward(xs_pad, ilens, ys_pad)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of source sequences (B)

  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

Returns:

ctc loss value

Return type:

torch.Tensor

Returns:

attention loss value

Return type:

torch.Tensor

Returns:

accuracy in attention decoder

Return type:

float

recognize(x, recog_args, char_list=None, rnnlm=None)[source]

Recognize input speech.

Parameters:
  • x (ndnarray) – input acoustic feature (B, T, D) or (T, D)

  • recog_args (Namespace) – argment Namespace contraining options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

decoding result

Return type:

list

espnet.nets.pytorch_backend.e2e_tts_fastspeech

FastSpeech related modules.

class espnet.nets.pytorch_backend.e2e_tts_fastspeech.FeedForwardTransformer(idim, odim, args=None)[source]

Bases: espnet.nets.tts_interface.TTSInterface, torch.nn.modules.module.Module

Feed Forward Transformer for TTS a.k.a. FastSpeech.

This is a module of FastSpeech, feed-forward Transformer with duration predictor described in FastSpeech: Fast, Robust and Controllable Text to Speech, which does not require any auto-regressive processing during inference, resulting in fast decoding compared with auto-regressive Transformer.

Initialize feed-forward Transformer module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • args (Namespace, optional) –

    • elayers (int): Number of encoder layers.

    • eunits (int): Number of encoder hidden units.

    • adim (int): Number of attention transformation dimensions.

    • aheads (int): Number of heads for multi head attention.

    • dlayers (int): Number of decoder layers.

    • dunits (int): Number of decoder hidden units.

    • use_scaled_pos_enc (bool):

      Whether to use trainable scaled positional encoding.

    • encoder_normalize_before (bool):

      Whether to perform layer normalization before encoder block.

    • decoder_normalize_before (bool):

      Whether to perform layer normalization before decoder block.

    • encoder_concat_after (bool): Whether to concatenate attention

      layer’s input and output in encoder.

    • decoder_concat_after (bool): Whether to concatenate attention

      layer’s input and output in decoder.

    • duration_predictor_layers (int): Number of duration predictor layers.

    • duration_predictor_chans (int): Number of duration predictor channels.

    • duration_predictor_kernel_size (int):

      Kernel size of duration predictor.

    • spk_embed_dim (int): Number of speaker embedding dimensions.

    • spk_embed_integration_type: How to integrate speaker embedding.

    • teacher_model (str): Teacher auto-regressive transformer model path.

    • reduction_factor (int): Reduction factor.

    • transformer_init (float): How to initialize transformer parameters.

    • transformer_lr (float): Initial value of learning rate.

    • transformer_warmup_steps (int): Optimizer warmup steps.

    • transformer_enc_dropout_rate (float):

      Dropout rate in encoder except attention & positional encoding.

    • transformer_enc_positional_dropout_rate (float):

      Dropout rate after encoder positional encoding.

    • transformer_enc_attn_dropout_rate (float):

      Dropout rate in encoder self-attention module.

    • transformer_dec_dropout_rate (float):

      Dropout rate in decoder except attention & positional encoding.

    • transformer_dec_positional_dropout_rate (float):

      Dropout rate after decoder positional encoding.

    • transformer_dec_attn_dropout_rate (float):

      Dropout rate in deocoder self-attention module.

    • transformer_enc_dec_attn_dropout_rate (float):

      Dropout rate in encoder-deocoder attention module.

    • use_masking (bool):

      Whether to apply masking for padded part in loss calculation.

    • use_weighted_masking (bool):

      Whether to apply weighted masking in loss calculation.

    • transfer_encoder_from_teacher:

      Whether to transfer encoder using teacher encoder parameters.

    • transferred_encoder_module:

      Encoder module to be initialized using teacher parameters.

static add_arguments(parser)[source]

Add model-specific arguments to the parser.

property attention_plot_class

Return plot class for attention weight plot.

property base_plot_keys

Return base key names to plot during training.

keys should match what chainer.reporter reports. If you add the key loss, the reporter will report main/loss and validation/main/loss values. also loss.png will be created as a figure visulizing main/loss and validation/main/loss values.

Returns:

List of strings which are base keys to plot during training.

Return type:

list

calculate_all_attentions(xs, ilens, ys, olens, spembs=None, extras=None, *args, **kwargs)[source]

Calculate all of the attention weights.

Parameters:
  • xs (Tensor) – Batch of padded character ids (B, Tmax).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

  • extras (Tensor, optional) – Batch of precalculated durations (B, Tmax, 1).

Returns:

Dict of attention weights and outputs.

Return type:

dict

forward(xs, ilens, ys, olens, spembs=None, extras=None, *args, **kwargs)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of padded character ids (B, Tmax).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

  • extras (Tensor, optional) – Batch of precalculated durations (B, Tmax, 1).

Returns:

Loss value.

Return type:

Tensor

inference(x, inference_args, spemb=None, *args, **kwargs)[source]

Generate the sequence of features given the sequences of characters.

Parameters:
  • x (Tensor) – Input sequence of characters (T,).

  • inference_args (Namespace) – Dummy for compatibility.

  • spemb (Tensor, optional) – Speaker embedding vector (spk_embed_dim).

Returns:

Output sequence of features (L, odim). None: Dummy for compatibility. None: Dummy for compatibility.

Return type:

Tensor

class espnet.nets.pytorch_backend.e2e_tts_fastspeech.FeedForwardTransformerLoss(use_masking=True, use_weighted_masking=False)[source]

Bases: torch.nn.modules.module.Module

Loss function module for feed-forward Transformer.

Initialize feed-forward Transformer loss module.

Parameters:
  • use_masking (bool) – Whether to apply masking for padded part in loss calculation.

  • use_weighted_masking (bool) – Whether to weighted masking in loss calculation.

forward(after_outs, before_outs, d_outs, ys, ds, ilens, olens)[source]

Calculate forward propagation.

Parameters:
  • after_outs (Tensor) – Batch of outputs after postnets (B, Lmax, odim).

  • before_outs (Tensor) – Batch of outputs before postnets (B, Lmax, odim).

  • d_outs (Tensor) – Batch of outputs of duration predictor (B, Tmax).

  • ys (Tensor) – Batch of target features (B, Lmax, odim).

  • ds (Tensor) – Batch of durations (B, Tmax).

  • ilens (LongTensor) – Batch of the lengths of each input (B,).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

Returns:

L1 loss value. Tensor: Duration predictor loss value.

Return type:

Tensor

espnet.nets.pytorch_backend.e2e_st_transformer

Transformer speech recognition model (pytorch).

class espnet.nets.pytorch_backend.e2e_st_transformer.E2E(idim, odim, args, ignore_id=-1)[source]

Bases: espnet.nets.st_interface.STInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

property attention_plot_class

Return PlotAttentionReport.

calculate_all_attentions(xs_pad, ilens, ys_pad, ys_pad_src)[source]

E2E attention calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

  • ys_pad_src (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

attention weights (B, H, Lmax, Tmax)

Return type:

float ndarray

calculate_all_ctc_probs(xs_pad, ilens, ys_pad, ys_pad_src)[source]

E2E CTC probability calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

  • ys_pad_src (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

CTC probability (B, Tmax, vocab)

Return type:

float ndarray

encode(x)[source]

Encode source acoustic features.

Parameters:

x (ndarray) – source acoustic feature (T, D)

Returns:

encoder outputs

Return type:

torch.Tensor

forward(xs_pad, ilens, ys_pad, ys_pad_src)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of source sequences (B)

  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

  • ys_pad_src (torch.Tensor) – batch of padded target sequences (B, Lmax)

Returns:

ctc loss value

Return type:

torch.Tensor

Returns:

attention loss value

Return type:

torch.Tensor

Returns:

accuracy in attention decoder

Return type:

float

forward_asr(hs_pad, hs_mask, ys_pad)[source]

Forward pass in the auxiliary ASR task.

Parameters:
  • hs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax, idim)

  • hs_mask (torch.Tensor) – batch of input token mask (B, Lmax)

  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

Returns:

ASR attention loss value

Return type:

torch.Tensor

Returns:

accuracy in ASR attention decoder

Return type:

float

Returns:

ASR CTC loss value

Return type:

torch.Tensor

Returns:

character error rate from CTC prediction

Return type:

float

Returns:

character error rate from attetion decoder prediction

Return type:

float

Returns:

word error rate from attetion decoder prediction

Return type:

float

forward_mt(xs_pad, ys_in_pad, ys_out_pad, ys_mask)[source]

Forward pass in the auxiliary MT task.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax, idim)

  • ys_in_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

  • ys_out_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

  • ys_mask (torch.Tensor) – batch of input token mask (B, Lmax)

Returns:

MT loss value

Return type:

torch.Tensor

Returns:

accuracy in MT decoder

Return type:

float

get_total_subsampling_factor()[source]

Get total subsampling factor.

reset_parameters(args)[source]

Initialize parameters.

scorers()[source]

Scorers.

translate(x, trans_args, char_list=None)[source]

Translate input speech.

Parameters:
  • x (ndnarray) – input acoustic feature (B, T, D) or (T, D)

  • trans_args (Namespace) – argment Namespace contraining options

  • char_list (list) – list of characters

Returns:

N-best decoding results

Return type:

list

espnet.nets.pytorch_backend.ctc

class espnet.nets.pytorch_backend.ctc.CTC(odim, eprojs, dropout_rate, ctc_type='builtin', reduce=True)[source]

Bases: torch.nn.modules.module.Module

CTC module

Parameters:
  • odim (int) – dimension of outputs

  • eprojs (int) – number of encoder projection units

  • dropout_rate (float) – dropout rate (0.0 ~ 1.0)

  • ctc_type (str) – builtin

  • reduce (bool) – reduce the CTC loss into a scalar

argmax(hs_pad)[source]

argmax of frame activations

Parameters:

hs_pad (torch.Tensor) – 3d tensor (B, Tmax, eprojs)

Returns:

argmax applied 2d tensor (B, Tmax)

Return type:

torch.Tensor

forced_align(h, y, blank_id=0)[source]

forced alignment.

Parameters:
  • h (torch.Tensor) – hidden state sequence, 2d tensor (T, D)

  • y (int) – id sequence tensor 1d tensor (L)

  • y – blank symbol index

Returns:

best alignment results

Return type:

list

forward(hs_pad, hlens, ys_pad)[source]

CTC forward

Parameters:
  • hs_pad (torch.Tensor) – batch of padded hidden state sequences (B, Tmax, D)

  • hlens (torch.Tensor) – batch of lengths of hidden state sequences (B)

  • ys_pad (torch.Tensor) – batch of padded character id sequence tensor (B, Lmax)

Returns:

ctc loss value

Return type:

torch.Tensor

log_softmax(hs_pad)[source]

log_softmax of frame activations

Parameters:

hs_pad (torch.Tensor) – 3d tensor (B, Tmax, eprojs)

Returns:

log softmax applied 3d tensor (B, Tmax, odim)

Return type:

torch.Tensor

loss_fn(th_pred, th_target, th_ilen, th_olen)[source]
softmax(hs_pad)[source]

softmax of frame activations

Parameters:

hs_pad (torch.Tensor) – 3d tensor (B, Tmax, eprojs)

Returns:

log softmax applied 3d tensor (B, Tmax, odim)

Return type:

torch.Tensor

espnet.nets.pytorch_backend.ctc.ctc_for(args, odim, reduce=True)[source]

Returns the CTC module for the given args and output dimension

Parameters:

args (Namespace) – the program args

:param int odim : The output dimension :param bool reduce : return the CTC loss in a scalar :return: the corresponding CTC module

espnet.nets.pytorch_backend.wavenet

This code is based on https://github.com/kan-bayashi/PytorchWaveNetVocoder.

class espnet.nets.pytorch_backend.wavenet.CausalConv1d(in_channels, out_channels, kernel_size, dilation=1, bias=True)[source]

Bases: torch.nn.modules.module.Module

1D dilated causal convolution.

forward(x)[source]

Calculate forward propagation.

Parameters:

x (Tensor) – Input tensor with the shape (B, in_channels, T).

Returns:

Tensor with the shape (B, out_channels, T)

Return type:

Tensor

class espnet.nets.pytorch_backend.wavenet.OneHot(depth)[source]

Bases: torch.nn.modules.module.Module

Convert to one-hot vector.

Parameters:

depth (int) – Dimension of one-hot vector.

forward(x)[source]

Calculate forward propagation.

Parameters:

x (LongTensor) – long tensor variable with the shape (B, T)

Returns:

float tensor variable with the shape (B, depth, T)

Return type:

Tensor

class espnet.nets.pytorch_backend.wavenet.UpSampling(upsampling_factor, bias=True)[source]

Bases: torch.nn.modules.module.Module

Upsampling layer with deconvolution.

Parameters:

upsampling_factor (int) – Upsampling factor.

forward(x)[source]

Calculate forward propagation.

Parameters:

x (Tensor) – Input tensor with the shape (B, C, T)

Returns:

Tensor with the shape (B, C, T’) where T’ = T * upsampling_factor.

Return type:

Tensor

class espnet.nets.pytorch_backend.wavenet.WaveNet(n_quantize=256, n_aux=28, n_resch=512, n_skipch=256, dilation_depth=10, dilation_repeat=3, kernel_size=2, upsampling_factor=0)[source]

Bases: torch.nn.modules.module.Module

Conditional wavenet.

Parameters:
  • n_quantize (int) – Number of quantization.

  • n_aux (int) – Number of aux feature dimension.

  • n_resch (int) – Number of filter channels for residual block.

  • n_skipch (int) – Number of filter channels for skip connection.

  • dilation_depth (int) – Number of dilation depth (e.g. if set 10, max dilation = 2^(10-1)).

  • dilation_repeat (int) – Number of dilation repeat.

  • kernel_size (int) – Filter size of dilated causal convolution.

  • upsampling_factor (int) – Upsampling factor.

forward(x, h)[source]

Calculate forward propagation.

Parameters:
  • x (LongTensor) – Quantized input waveform tensor with the shape (B, T).

  • h (Tensor) – Auxiliary feature tensor with the shape (B, n_aux, T).

Returns:

Logits with the shape (B, T, n_quantize).

Return type:

Tensor

generate(x, h, n_samples, interval=None, mode='sampling')[source]

Generate a waveform with fast genration algorithm.

This generation based on Fast WaveNet Generation Algorithm.

Parameters:
  • x (LongTensor) – Initial waveform tensor with the shape (T,).

  • h (Tensor) – Auxiliary feature tensor with the shape (n_samples + T, n_aux).

  • n_samples (int) – Number of samples to be generated.

  • interval (int, optional) – Log interval.

  • mode (str, optional) – “sampling” or “argmax”.

Returns:

Generated quantized waveform (n_samples).

Return type:

ndarray

espnet.nets.pytorch_backend.wavenet.decode_mu_law(y, mu=256)[source]

Perform mu-law decoding.

Parameters:
  • x (ndarray) – Quantized audio signal with the range from 0 to mu - 1.

  • mu (int) – Quantized level.

Returns:

Audio signal with the range from -1 to 1.

Return type:

ndarray

espnet.nets.pytorch_backend.wavenet.encode_mu_law(x, mu=256)[source]

Perform mu-law encoding.

Parameters:
  • x (ndarray) – Audio signal with the range from -1 to 1.

  • mu (int) – Quantized level.

Returns:

Quantized audio signal with the range from 0 to mu - 1.

Return type:

ndarray

espnet.nets.pytorch_backend.wavenet.initialize(m)[source]

Initilize conv layers with xavier.

Parameters:

m (torch.nn.Module) – Torch module.

espnet.nets.pytorch_backend.e2e_tts_transformer

TTS-Transformer related modules.

class espnet.nets.pytorch_backend.e2e_tts_transformer.GuidedMultiHeadAttentionLoss(sigma=0.4, alpha=1.0, reset_always=True)[source]

Bases: espnet.nets.pytorch_backend.e2e_tts_tacotron2.GuidedAttentionLoss

Guided attention loss function module for multi head attention.

Parameters:
  • sigma (float, optional) – Standard deviation to control

  • close attention to a diagonal. (how) –

  • alpha (float, optional) – Scaling coefficient (lambda).

  • reset_always (bool, optional) – Whether to always reset masks.

Initialize guided attention loss module.

Parameters:
  • sigma (float, optional) – Standard deviation to control how close attention to a diagonal.

  • alpha (float, optional) – Scaling coefficient (lambda).

  • reset_always (bool, optional) – Whether to always reset masks.

forward(att_ws, ilens, olens)[source]

Calculate forward propagation.

Parameters:
  • att_ws (Tensor) – Batch of multi head attention weights (B, H, T_max_out, T_max_in).

  • ilens (LongTensor) – Batch of input lengths (B,).

  • olens (LongTensor) – Batch of output lengths (B,).

Returns:

Guided attention loss value.

Return type:

Tensor

class espnet.nets.pytorch_backend.e2e_tts_transformer.TTSPlot(att_vis_fn, data, outdir, converter, transform, device, reverse=False, ikey='input', iaxis=0, okey='output', oaxis=0, subsampling_factor=1)[source]

Bases: espnet.nets.pytorch_backend.transformer.plot.PlotAttentionReport

Attention plot module for TTS-Transformer.

plotfn(data_dict, uttid_list, attn_dict, outdir, suffix='png', savefn=None)[source]

Plot multi head attentions.

Parameters:
  • data_dict (dict) – Utts info from json file.

  • uttid_list (list) – List of utt_id.

  • attn_dict (dict) – Multi head attention dict. Values should be numpy.ndarray (H, L, T)

  • outdir (str) – Directory name to save figures.

  • suffix (str) – Filename suffix including image type (e.g., png).

  • savefn (function) – Function to save figures.

class espnet.nets.pytorch_backend.e2e_tts_transformer.Transformer(idim, odim, args=None)[source]

Bases: espnet.nets.tts_interface.TTSInterface, torch.nn.modules.module.Module

Text-to-Speech Transformer module.

This is a module of text-to-speech Transformer described in Neural Speech Synthesis with Transformer Network, which convert the sequence of characters or phonemes into the sequence of Mel-filterbanks.

Initialize TTS-Transformer module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • args (Namespace, optional) –

    • embed_dim (int): Dimension of character embedding.

    • eprenet_conv_layers (int):

      Number of encoder prenet convolution layers.

    • eprenet_conv_chans (int):

      Number of encoder prenet convolution channels.

    • eprenet_conv_filts (int): Filter size of encoder prenet convolution.

    • dprenet_layers (int): Number of decoder prenet layers.

    • dprenet_units (int): Number of decoder prenet hidden units.

    • elayers (int): Number of encoder layers.

    • eunits (int): Number of encoder hidden units.

    • adim (int): Number of attention transformation dimensions.

    • aheads (int): Number of heads for multi head attention.

    • dlayers (int): Number of decoder layers.

    • dunits (int): Number of decoder hidden units.

    • postnet_layers (int): Number of postnet layers.

    • postnet_chans (int): Number of postnet channels.

    • postnet_filts (int): Filter size of postnet.

    • use_scaled_pos_enc (bool):

      Whether to use trainable scaled positional encoding.

    • use_batch_norm (bool):

      Whether to use batch normalization in encoder prenet.

    • encoder_normalize_before (bool):

      Whether to perform layer normalization before encoder block.

    • decoder_normalize_before (bool):

      Whether to perform layer normalization before decoder block.

    • encoder_concat_after (bool): Whether to concatenate attention

      layer’s input and output in encoder.

    • decoder_concat_after (bool): Whether to concatenate attention

      layer’s input and output in decoder.

    • reduction_factor (int): Reduction factor.

    • spk_embed_dim (int): Number of speaker embedding dimenstions.

    • spk_embed_integration_type: How to integrate speaker embedding.

    • transformer_init (float): How to initialize transformer parameters.

    • transformer_lr (float): Initial value of learning rate.

    • transformer_warmup_steps (int): Optimizer warmup steps.

    • transformer_enc_dropout_rate (float):

      Dropout rate in encoder except attention & positional encoding.

    • transformer_enc_positional_dropout_rate (float):

      Dropout rate after encoder positional encoding.

    • transformer_enc_attn_dropout_rate (float):

      Dropout rate in encoder self-attention module.

    • transformer_dec_dropout_rate (float):

      Dropout rate in decoder except attention & positional encoding.

    • transformer_dec_positional_dropout_rate (float):

      Dropout rate after decoder positional encoding.

    • transformer_dec_attn_dropout_rate (float):

      Dropout rate in deocoder self-attention module.

    • transformer_enc_dec_attn_dropout_rate (float):

      Dropout rate in encoder-deocoder attention module.

    • eprenet_dropout_rate (float): Dropout rate in encoder prenet.

    • dprenet_dropout_rate (float): Dropout rate in decoder prenet.

    • postnet_dropout_rate (float): Dropout rate in postnet.

    • use_masking (bool):

      Whether to apply masking for padded part in loss calculation.

    • use_weighted_masking (bool):

      Whether to apply weighted masking in loss calculation.

    • bce_pos_weight (float): Positive sample weight in bce calculation

      (only for use_masking=true).

    • loss_type (str): How to calculate loss.

    • use_guided_attn_loss (bool): Whether to use guided attention loss.

    • num_heads_applied_guided_attn (int):

      Number of heads in each layer to apply guided attention loss.

    • num_layers_applied_guided_attn (int):

      Number of layers to apply guided attention loss.

    • modules_applied_guided_attn (list):

      List of module names to apply guided attention loss.

    • guided-attn-loss-sigma (float) Sigma in guided attention loss.

    • guided-attn-loss-lambda (float): Lambda in guided attention loss.

static add_arguments(parser)[source]

Add model-specific arguments to the parser.

property attention_plot_class

Return plot class for attention weight plot.

property base_plot_keys

Return base key names to plot during training.

keys should match what chainer.reporter reports. If you add the key loss, the reporter will report main/loss and validation/main/loss values. also loss.png will be created as a figure visulizing main/loss and validation/main/loss values.

Returns:

List of strings which are base keys to plot during training.

Return type:

list

calculate_all_attentions(xs, ilens, ys, olens, spembs=None, skip_output=False, keep_tensor=False, *args, **kwargs)[source]

Calculate all of the attention weights.

Parameters:
  • xs (Tensor) – Batch of padded character ids (B, Tmax).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

  • skip_output (bool, optional) – Whether to skip calculate the final output.

  • keep_tensor (bool, optional) – Whether to keep original tensor.

Returns:

Dict of attention weights and outputs.

Return type:

dict

forward(xs, ilens, ys, labels, olens, spembs=None, *args, **kwargs)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of padded character ids (B, Tmax).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

Returns:

Loss value.

Return type:

Tensor

inference(x, inference_args, spemb=None, *args, **kwargs)[source]

Generate the sequence of features given the sequences of characters.

Parameters:
  • x (Tensor) – Input sequence of characters (T,).

  • inference_args (Namespace) –

    • threshold (float): Threshold in inference.

    • minlenratio (float): Minimum length ratio in inference.

    • maxlenratio (float): Maximum length ratio in inference.

  • spemb (Tensor, optional) – Speaker embedding vector (spk_embed_dim).

Returns:

Output sequence of features (L, odim). Tensor: Output sequence of stop probabilities (L,). Tensor: Encoder-decoder (source) attention weights (#layers, #heads, L, T).

Return type:

Tensor

espnet.nets.pytorch_backend.gtn_ctc

GTN CTC implementation.

class espnet.nets.pytorch_backend.gtn_ctc.GTNCTCLossFunction(*args, **kwargs)[source]

Bases: torch.autograd.function.Function

GTN CTC module.

static backward(ctx, grad_output)[source]

Backward computation.

Parameters:

grad_output (torch.tensor) – backward passed gradient value

Returns:

cumulative gradient output

Return type:

(torch.Tensor, None, None, None)

static create_ctc_graph(target, blank_idx)[source]

Build gtn graph.

Parameters:
  • target (list) – single target sequence

  • blank_idx (int) – index of blank token

Returns:

gtn graph of target sequence

Return type:

gtn.Graph

static forward(ctx, log_probs, targets, ilens, blank_idx=0, reduction='none')[source]

Forward computation.

Parameters:
  • log_probs (torch.tensor) – batched log softmax probabilities (B, Tmax, oDim)

  • targets (list) – batched target sequences, list of lists

  • blank_idx (int) – index of blank token

Returns:

ctc loss value

Return type:

torch.Tensor

espnet.nets.pytorch_backend.e2e_tts_tacotron2

Tacotron 2 related modules.

class espnet.nets.pytorch_backend.e2e_tts_tacotron2.GuidedAttentionLoss(sigma=0.4, alpha=1.0, reset_always=True)[source]

Bases: torch.nn.modules.module.Module

Guided attention loss function module.

This module calculates the guided attention loss described in Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention, which forces the attention to be diagonal.

Initialize guided attention loss module.

Parameters:
  • sigma (float, optional) – Standard deviation to control how close attention to a diagonal.

  • alpha (float, optional) – Scaling coefficient (lambda).

  • reset_always (bool, optional) – Whether to always reset masks.

forward(att_ws, ilens, olens)[source]

Calculate forward propagation.

Parameters:
  • att_ws (Tensor) – Batch of attention weights (B, T_max_out, T_max_in).

  • ilens (LongTensor) – Batch of input lengths (B,).

  • olens (LongTensor) – Batch of output lengths (B,).

Returns:

Guided attention loss value.

Return type:

Tensor

class espnet.nets.pytorch_backend.e2e_tts_tacotron2.Tacotron2(idim, odim, args=None)[source]

Bases: espnet.nets.tts_interface.TTSInterface, torch.nn.modules.module.Module

Tacotron2 module for end-to-end text-to-speech (E2E-TTS).

This is a module of Spectrogram prediction network in Tacotron2 described in Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions, which converts the sequence of characters into the sequence of Mel-filterbanks.

Initialize Tacotron2 module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • args (Namespace, optional) –

    • spk_embed_dim (int): Dimension of the speaker embedding.

    • embed_dim (int): Dimension of character embedding.

    • elayers (int): The number of encoder blstm layers.

    • eunits (int): The number of encoder blstm units.

    • econv_layers (int): The number of encoder conv layers.

    • econv_filts (int): The number of encoder conv filter size.

    • econv_chans (int): The number of encoder conv filter channels.

    • dlayers (int): The number of decoder lstm layers.

    • dunits (int): The number of decoder lstm units.

    • prenet_layers (int): The number of prenet layers.

    • prenet_units (int): The number of prenet units.

    • postnet_layers (int): The number of postnet layers.

    • postnet_filts (int): The number of postnet filter size.

    • postnet_chans (int): The number of postnet filter channels.

    • output_activation (int): The name of activation function for outputs.

    • adim (int): The number of dimension of mlp in attention.

    • aconv_chans (int): The number of attention conv filter channels.

    • aconv_filts (int): The number of attention conv filter size.

    • cumulate_att_w (bool): Whether to cumulate previous attention weight.

    • use_batch_norm (bool): Whether to use batch normalization.

    • use_concate (int): Whether to concatenate encoder embedding

      with decoder lstm outputs.

    • dropout_rate (float): Dropout rate.

    • zoneout_rate (float): Zoneout rate.

    • reduction_factor (int): Reduction factor.

    • spk_embed_dim (int): Number of speaker embedding dimenstions.

    • spc_dim (int): Number of spectrogram embedding dimenstions

      (only for use_cbhg=True).

    • use_cbhg (bool): Whether to use CBHG module.

    • cbhg_conv_bank_layers (int): The number of convoluional banks in CBHG.

    • cbhg_conv_bank_chans (int): The number of channels of

      convolutional bank in CBHG.

    • cbhg_proj_filts (int):

      The number of filter size of projection layeri in CBHG.

    • cbhg_proj_chans (int):

      The number of channels of projection layer in CBHG.

    • cbhg_highway_layers (int):

      The number of layers of highway network in CBHG.

    • cbhg_highway_units (int):

      The number of units of highway network in CBHG.

    • cbhg_gru_units (int): The number of units of GRU in CBHG.

    • use_masking (bool):

      Whether to apply masking for padded part in loss calculation.

    • use_weighted_masking (bool):

      Whether to apply weighted masking in loss calculation.

    • bce_pos_weight (float):

      Weight of positive sample of stop token (only for use_masking=True).

    • use-guided-attn-loss (bool): Whether to use guided attention loss.

    • guided-attn-loss-sigma (float) Sigma in guided attention loss.

    • guided-attn-loss-lamdba (float): Lambda in guided attention loss.

static add_arguments(parser)[source]

Add model-specific arguments to the parser.

property base_plot_keys

Return base key names to plot during training.

keys should match what chainer.reporter reports. If you add the key loss, the reporter will report main/loss and validation/main/loss values. also loss.png will be created as a figure visulizing main/loss and validation/main/loss values.

Returns:

List of strings which are base keys to plot during training.

Return type:

list

calculate_all_attentions(xs, ilens, ys, spembs=None, keep_tensor=False, *args, **kwargs)[source]

Calculate all of the attention weights.

Parameters:
  • xs (Tensor) – Batch of padded character ids (B, Tmax).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

  • keep_tensor (bool, optional) – Whether to keep original tensor.

Returns:

Batch of attention weights (B, Lmax, Tmax).

Return type:

Union[ndarray, Tensor]

forward(xs, ilens, ys, labels, olens, spembs=None, extras=None, *args, **kwargs)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of padded character ids (B, Tmax).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

  • extras (Tensor, optional) – Batch of groundtruth spectrograms (B, Lmax, spc_dim).

Returns:

Loss value.

Return type:

Tensor

inference(x, inference_args, spemb=None, *args, **kwargs)[source]

Generate the sequence of features given the sequences of characters.

Parameters:
  • x (Tensor) – Input sequence of characters (T,).

  • inference_args (Namespace) –

    • threshold (float): Threshold in inference.

    • minlenratio (float): Minimum length ratio in inference.

    • maxlenratio (float): Maximum length ratio in inference.

  • spemb (Tensor, optional) – Speaker embedding vector (spk_embed_dim).

Returns:

Output sequence of features (L, odim). Tensor: Output sequence of stop probabilities (L,). Tensor: Attention weights (L, T).

Return type:

Tensor

class espnet.nets.pytorch_backend.e2e_tts_tacotron2.Tacotron2Loss(use_masking=True, use_weighted_masking=False, bce_pos_weight=20.0)[source]

Bases: torch.nn.modules.module.Module

Loss function module for Tacotron2.

Initialize Tactoron2 loss module.

Parameters:
  • use_masking (bool) – Whether to apply masking for padded part in loss calculation.

  • use_weighted_masking (bool) – Whether to apply weighted masking in loss calculation.

  • bce_pos_weight (float) – Weight of positive sample of stop token.

forward(after_outs, before_outs, logits, ys, labels, olens)[source]

Calculate forward propagation.

Parameters:
  • after_outs (Tensor) – Batch of outputs after postnets (B, Lmax, odim).

  • before_outs (Tensor) – Batch of outputs before postnets (B, Lmax, odim).

  • logits (Tensor) – Batch of stop logits (B, Lmax).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • labels (LongTensor) – Batch of the sequences of stop token labels (B, Lmax).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

Returns:

L1 loss value. Tensor: Mean square error loss value. Tensor: Binary cross entropy loss value.

Return type:

Tensor

espnet.nets.pytorch_backend.e2e_asr

RNN sequence-to-sequence speech recognition model (pytorch).

class espnet.nets.pytorch_backend.e2e_asr.E2E(idim, odim, args)[source]

Bases: espnet.nets.asr_interface.ASRInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

static attention_add_arguments(parser)[source]

Add arguments for the attention.

calculate_all_attentions(xs_pad, ilens, ys_pad)[source]

E2E attention calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) other case => attention weights (B, Lmax, Tmax).

Return type:

float ndarray

calculate_all_ctc_probs(xs_pad, ilens, ys_pad)[source]

E2E CTC probability calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

CTC probability (B, Tmax, vocab)

Return type:

float ndarray

static decoder_add_arguments(parser)[source]

Add arguments for the decoder.

encode(x)[source]

Encode acoustic features.

Parameters:

x (ndarray) – input acoustic feature (T, D)

Returns:

encoder outputs

Return type:

torch.Tensor

static encoder_add_arguments(parser)[source]

Add arguments for the encoder.

enhance(xs)[source]

Forward only in the frontend stage.

Parameters:

xs (ndarray) – input acoustic feature (T, C, F)

Returns:

enhaned feature

Return type:

torch.Tensor

forward(xs_pad, ilens, ys_pad)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

loss value

Return type:

torch.Tensor

get_total_subsampling_factor()[source]

Get total subsampling factor.

init_like_chainer()[source]

Initialize weight like chainer.

chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0 pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5) however, there are two exceptions as far as I know. - EmbedID.W ~ Normal(0, 1) - LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)

recognize(x, recog_args, char_list, rnnlm=None)[source]

E2E beam search.

Parameters:
  • x (ndarray) – input acoustic feature (T, D)

  • recog_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

recognize_batch(xs, recog_args, char_list, rnnlm=None)[source]

E2E batch beam search.

Parameters:
  • xs (list) – list of input acoustic feature arrays [(T_1, D), (T_2, D), …]

  • recog_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

scorers()[source]

Scorers.

subsample_frames(x)[source]

Subsample speeh frames in the encoder.

class espnet.nets.pytorch_backend.e2e_asr.Reporter(**links)[source]

Bases: chainer.link.Chain

A chainer reporter wrapper.

report(loss_ctc, loss_att, acc, cer_ctc, cer, wer, mtl_loss)[source]

Report at every step.

espnet.nets.pytorch_backend.nets_utils

Network related utility tools.

espnet.nets.pytorch_backend.nets_utils.get_activation(act)[source]

Return activation function.

espnet.nets.pytorch_backend.nets_utils.get_subsample(train_args, mode, arch)[source]

Parse the subsampling factors from the args for the specified mode and arch.

Parameters:
  • train_args – argument Namespace containing options.

  • mode – one of (‘asr’, ‘mt’, ‘st’)

  • arch – one of (‘rnn’, ‘rnn-t’, ‘rnn_mix’, ‘rnn_mulenc’, ‘transformer’)

Returns:

subsampling factors.

Return type:

np.ndarray / List[np.ndarray]

espnet.nets.pytorch_backend.nets_utils.make_non_pad_mask(lengths, xs=None, length_dim=-1)[source]

Make mask tensor containing indices of non-padded part.

Parameters:
  • lengths (LongTensor or List) – Batch of lengths (B,).

  • xs (Tensor, optional) – The reference tensor. If set, masks will be the same shape as this tensor.

  • length_dim (int, optional) – Dimension indicator of the above tensor. See the example.

Returns:

mask tensor containing indices of padded part.

dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (including 1.2)

Return type:

ByteTensor

Examples

With only lengths.

>>> lengths = [5, 3, 2]
>>> make_non_pad_mask(lengths)
masks = [[1, 1, 1, 1 ,1],
         [1, 1, 1, 0, 0],
         [1, 1, 0, 0, 0]]

With the reference tensor.

>>> xs = torch.zeros((3, 2, 4))
>>> make_non_pad_mask(lengths, xs)
tensor([[[1, 1, 1, 1],
         [1, 1, 1, 1]],
        [[1, 1, 1, 0],
         [1, 1, 1, 0]],
        [[1, 1, 0, 0],
         [1, 1, 0, 0]]], dtype=torch.uint8)
>>> xs = torch.zeros((3, 2, 6))
>>> make_non_pad_mask(lengths, xs)
tensor([[[1, 1, 1, 1, 1, 0],
         [1, 1, 1, 1, 1, 0]],
        [[1, 1, 1, 0, 0, 0],
         [1, 1, 1, 0, 0, 0]],
        [[1, 1, 0, 0, 0, 0],
         [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)

With the reference tensor and dimension indicator.

>>> xs = torch.zeros((3, 6, 6))
>>> make_non_pad_mask(lengths, xs, 1)
tensor([[[1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0]],
        [[1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0]],
        [[1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0]]], dtype=torch.uint8)
>>> make_non_pad_mask(lengths, xs, 2)
tensor([[[1, 1, 1, 1, 1, 0],
         [1, 1, 1, 1, 1, 0],
         [1, 1, 1, 1, 1, 0],
         [1, 1, 1, 1, 1, 0],
         [1, 1, 1, 1, 1, 0],
         [1, 1, 1, 1, 1, 0]],
        [[1, 1, 1, 0, 0, 0],
         [1, 1, 1, 0, 0, 0],
         [1, 1, 1, 0, 0, 0],
         [1, 1, 1, 0, 0, 0],
         [1, 1, 1, 0, 0, 0],
         [1, 1, 1, 0, 0, 0]],
        [[1, 1, 0, 0, 0, 0],
         [1, 1, 0, 0, 0, 0],
         [1, 1, 0, 0, 0, 0],
         [1, 1, 0, 0, 0, 0],
         [1, 1, 0, 0, 0, 0],
         [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)
espnet.nets.pytorch_backend.nets_utils.make_pad_mask(lengths, xs=None, length_dim=-1, maxlen=None)[source]

Make mask tensor containing indices of padded part.

Parameters:
  • lengths (LongTensor or List) – Batch of lengths (B,).

  • xs (Tensor, optional) – The reference tensor. If set, masks will be the same shape as this tensor.

  • length_dim (int, optional) – Dimension indicator of the above tensor. See the example.

Returns:

Mask tensor containing indices of padded part.

dtype=torch.uint8 in PyTorch 1.2- dtype=torch.bool in PyTorch 1.2+ (including 1.2)

Return type:

Tensor

Examples

With only lengths.

>>> lengths = [5, 3, 2]
>>> make_pad_mask(lengths)
masks = [[0, 0, 0, 0 ,0],
         [0, 0, 0, 1, 1],
         [0, 0, 1, 1, 1]]

With the reference tensor.

>>> xs = torch.zeros((3, 2, 4))
>>> make_pad_mask(lengths, xs)
tensor([[[0, 0, 0, 0],
         [0, 0, 0, 0]],
        [[0, 0, 0, 1],
         [0, 0, 0, 1]],
        [[0, 0, 1, 1],
         [0, 0, 1, 1]]], dtype=torch.uint8)
>>> xs = torch.zeros((3, 2, 6))
>>> make_pad_mask(lengths, xs)
tensor([[[0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 1]],
        [[0, 0, 0, 1, 1, 1],
         [0, 0, 0, 1, 1, 1]],
        [[0, 0, 1, 1, 1, 1],
         [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)

With the reference tensor and dimension indicator.

>>> xs = torch.zeros((3, 6, 6))
>>> make_pad_mask(lengths, xs, 1)
tensor([[[0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [1, 1, 1, 1, 1, 1]],
        [[0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1]],
        [[0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1],
         [1, 1, 1, 1, 1, 1]]], dtype=torch.uint8)
>>> make_pad_mask(lengths, xs, 2)
tensor([[[0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 1],
         [0, 0, 0, 0, 0, 1]],
        [[0, 0, 0, 1, 1, 1],
         [0, 0, 0, 1, 1, 1],
         [0, 0, 0, 1, 1, 1],
         [0, 0, 0, 1, 1, 1],
         [0, 0, 0, 1, 1, 1],
         [0, 0, 0, 1, 1, 1]],
        [[0, 0, 1, 1, 1, 1],
         [0, 0, 1, 1, 1, 1],
         [0, 0, 1, 1, 1, 1],
         [0, 0, 1, 1, 1, 1],
         [0, 0, 1, 1, 1, 1],
         [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)
espnet.nets.pytorch_backend.nets_utils.mask_by_length(xs, lengths, fill=0)[source]

Mask tensor according to length.

Parameters:
  • xs (Tensor) – Batch of input tensor (B, *).

  • lengths (LongTensor or List) – Batch of lengths (B,).

  • fill (int or float) – Value to fill masked part.

Returns:

Batch of masked input tensor (B, *).

Return type:

Tensor

Examples

>>> x = torch.arange(5).repeat(3, 1) + 1
>>> x
tensor([[1, 2, 3, 4, 5],
        [1, 2, 3, 4, 5],
        [1, 2, 3, 4, 5]])
>>> lengths = [5, 3, 2]
>>> mask_by_length(x, lengths)
tensor([[1, 2, 3, 4, 5],
        [1, 2, 3, 0, 0],
        [1, 2, 0, 0, 0]])
espnet.nets.pytorch_backend.nets_utils.pad_list(xs, pad_value)[source]

Perform padding for the list of tensors.

Parameters:
  • xs (List) – List of Tensors [(T_1, *), (T_2, *), …, (T_B, *)].

  • pad_value (float) – Value for padding.

Returns:

Padded tensor (B, Tmax, *).

Return type:

Tensor

Examples

>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
        [1., 1., 0., 0.],
        [1., 0., 0., 0.]])
espnet.nets.pytorch_backend.nets_utils.rename_state_dict(old_prefix: str, new_prefix: str, state_dict: Dict[str, torch.Tensor])[source]

Replace keys of old prefix with new prefix in state dict.

espnet.nets.pytorch_backend.nets_utils.th_accuracy(pad_outputs, pad_targets, ignore_label)[source]

Calculate accuracy.

Parameters:
  • pad_outputs (Tensor) – Prediction tensors (B * Lmax, D).

  • pad_targets (LongTensor) – Target label tensors (B, Lmax, D).

  • ignore_label (int) – Ignore label id.

Returns:

Accuracy value (0.0 - 1.0).

Return type:

float

espnet.nets.pytorch_backend.nets_utils.to_device(m, x)[source]

Send tensor into the device of the module.

Parameters:
  • m (torch.nn.Module) – Torch module.

  • x (Tensor) – Torch tensor.

Returns:

Torch tensor located in the same place as torch module.

Return type:

Tensor

espnet.nets.pytorch_backend.nets_utils.to_torch_tensor(x)[source]

Change to torch.Tensor or ComplexTensor from numpy.ndarray.

Parameters:

x – Inputs. It should be one of numpy.ndarray, Tensor, ComplexTensor, and dict.

Returns:

Type converted inputs.

Return type:

Tensor or ComplexTensor

Examples

>>> xs = np.ones(3, dtype=np.float32)
>>> xs = to_torch_tensor(xs)
tensor([1., 1., 1.])
>>> xs = torch.ones(3, 4, 5)
>>> assert to_torch_tensor(xs) is xs
>>> xs = {'real': xs, 'imag': xs}
>>> to_torch_tensor(xs)
ComplexTensor(
Real:
tensor([1., 1., 1.])
Imag;
tensor([1., 1., 1.])
)

espnet.nets.pytorch_backend.e2e_mt

RNN sequence-to-sequence text translation model (pytorch).

class espnet.nets.pytorch_backend.e2e_mt.E2E(idim, odim, args)[source]

Bases: espnet.nets.mt_interface.MTInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

static attention_add_arguments(parser)[source]

Add arguments for the attention.

calculate_all_attentions(xs_pad, ilens, ys_pad)[source]

E2E attention calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) other case => attention weights (B, Lmax, Tmax).

Return type:

float ndarray

static decoder_add_arguments(parser)[source]

Add arguments for the decoder.

static encoder_add_arguments(parser)[source]

Add arguments for the encoder.

forward(xs_pad, ilens, ys_pad)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

loss value

Return type:

torch.Tensor

init_like_fairseq()[source]

Initialize weight like Fairseq.

Fairseq basically uses W, b, EmbedID.W ~ Uniform(-0.1, 0.1),

target_language_biasing(xs_pad, ilens, ys_pad)[source]

Prepend target language IDs to source sentences for multilingual MT.

These tags are prepended in source/target sentences as pre-processing.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

Returns:

source text without language IDs

Return type:

torch.Tensor

Returns:

target text without language IDs

Return type:

torch.Tensor

Returns:

target language IDs

Return type:

torch.Tensor (B, 1)

translate(x, trans_args, char_list, rnnlm=None)[source]

E2E beam search.

Parameters:
  • x (ndarray) – input source text feature (B, T, D)

  • trans_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

translate_batch(xs, trans_args, char_list, rnnlm=None)[source]

E2E batch beam search.

Parameters:
  • xs (list) – list of input source text feature arrays [(T_1, D), (T_2, D), …]

  • trans_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

class espnet.nets.pytorch_backend.e2e_mt.Reporter(**links)[source]

Bases: chainer.link.Chain

A chainer reporter wrapper.

report(loss, acc, ppl, bleu)[source]

Report at every step.

espnet.nets.pytorch_backend.e2e_asr_mix_transformer

Transformer speech recognition model for single-channel multi-speaker mixture speech.

It is a fusion of e2e_asr_mix.py and e2e_asr_transformer.py. Refer to:

https://arxiv.org/pdf/2002.03921.pdf

  1. The Transformer-based Encoder now consists of three stages:

    (a): Enc_mix: encoding input mixture speech; (b): Enc_SD: separating mixed speech representations; (c): Enc_rec: transforming each separated speech representation.

  2. PIT is used in CTC to determine the permutation with minimum loss.

class espnet.nets.pytorch_backend.e2e_asr_mix_transformer.E2E(idim, odim, args, ignore_id=-1)[source]

Bases: espnet.nets.pytorch_backend.e2e_asr_transformer.E2E, espnet.nets.asr_interface.ASRInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

decoder_and_attention(hs_pad, hs_mask, ys_pad, batch_size)[source]

Forward decoder and attention loss.

encode(x)[source]

Encode acoustic features.

Parameters:

x (ndarray) – source acoustic feature (T, D)

Returns:

encoder outputs

Return type:

torch.Tensor

forward(xs_pad, ilens, ys_pad)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of source sequences (B)

  • ys_pad (torch.Tensor) – batch of padded target sequences (B, num_spkrs, Lmax)

Returns:

ctc loass value

Return type:

torch.Tensor

Returns:

attention loss value

Return type:

torch.Tensor

Returns:

accuracy in attention decoder

Return type:

float

recog(enc_output, recog_args, char_list=None, rnnlm=None, use_jit=False)[source]

Recognize input speech of each speaker.

Parameters:
  • enc_output (ndnarray) – encoder outputs (B, T, D) or (T, D)

  • recog_args (Namespace) – argment Namespace contraining options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

recognize(x, recog_args, char_list=None, rnnlm=None, use_jit=False)[source]

Recognize input speech of each speaker.

Parameters:
  • x (ndnarray) – input acoustic feature (B, T, D) or (T, D)

  • recog_args (Namespace) – argment Namespace contraining options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

espnet.nets.pytorch_backend.initialization

Initialization functions for RNN sequence-to-sequence models.

espnet.nets.pytorch_backend.initialization.lecun_normal_init_parameters(module)[source]

Initialize parameters in the LeCun’s manner.

espnet.nets.pytorch_backend.initialization.set_forget_bias_to_one(bias)[source]

Initialize a bias vector in the forget gate with one.

espnet.nets.pytorch_backend.initialization.uniform_init_parameters(module)[source]

Initialize parameters with an uniform distribution.

espnet.nets.pytorch_backend.e2e_asr_conformer

Conformer speech recognition model (pytorch).

It is a fusion of e2e_asr_transformer.py Refer to: https://arxiv.org/abs/2005.08100

class espnet.nets.pytorch_backend.e2e_asr_conformer.E2E(idim, odim, args, ignore_id=-1)[source]

Bases: espnet.nets.pytorch_backend.e2e_asr_transformer.E2E

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

static add_conformer_arguments(parser)[source]

Add arguments for conformer model.

espnet.nets.pytorch_backend.e2e_asr_transducer

Transducer speech recognition model (pytorch).

class espnet.nets.pytorch_backend.e2e_asr_transducer.E2E(idim: int, odim: int, args: argparse.Namespace, ignore_id: int = -1, blank_id: int = 0, training: bool = True)[source]

Bases: espnet.nets.asr_interface.ASRInterface, torch.nn.modules.module.Module

E2E module for Transducer models.

Parameters:
  • idim – Dimension of inputs.

  • odim – Dimension of outputs.

  • args – Namespace containing model options.

  • ignore_id – Padding symbol ID.

  • blank_id – Blank symbol ID.

  • training – Whether the model is initialized in training or inference mode.

Construct an E2E object for Transducer model.

static add_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add arguments for Transducer model.

property attention_plot_class

Get attention plot class.

static auxiliary_task_add_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add arguments for auxiliary task.

calculate_all_attentions(feats: torch.Tensor, feats_len: torch.Tensor, labels: torch.Tensor) → numpy.ndarray[source]

E2E attention calculation.

Parameters:
  • feats – Feature sequences. (B, F, D_feats)

  • feats_len – Feature sequences lengths. (B,)

  • labels – Label ID sequences. (B, L)

Returns:

Attention weights with the following shape,
  1. multi-head case => attention weights. (B, D_att, U, T),

  2. other case => attention weights. (B, U, T)

Return type:

ret

static decoder_add_custom_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add arguments for Custom decoder.

static decoder_add_general_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add general arguments for decoder.

static decoder_add_rnn_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add arguments for RNN decoder.

default_parameters(args: argparse.Namespace)[source]

Initialize/reset parameters for Transducer.

Parameters:

args – Namespace containing model options.

encode_custom(feats: numpy.ndarray) → torch.Tensor[source]

Encode acoustic features.

Parameters:

feats – Feature sequence. (F, D_feats)

Returns:

Encoded feature sequence. (T, D_enc)

Return type:

enc_out

encode_rnn(feats: numpy.ndarray) → torch.Tensor[source]

Encode acoustic features.

Parameters:

feats – Feature sequence. (F, D_feats)

Returns:

Encoded feature sequence. (T, D_enc)

Return type:

enc_out

static encoder_add_custom_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add arguments for Custom encoder.

static encoder_add_general_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add general arguments for encoder.

static encoder_add_rnn_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add arguments for RNN encoder.

forward(feats: torch.Tensor, feats_len: torch.Tensor, labels: torch.Tensor) → torch.Tensor[source]

E2E forward.

Parameters:
  • feats – Feature sequences. (B, F, D_feats)

  • feats_len – Feature sequences lengths. (B,)

  • labels – Label ID sequences. (B, L)

Returns:

Transducer loss value

Return type:

loss

get_total_subsampling_factor() → float[source]

Get total subsampling factor.

recognize(feats: numpy.ndarray, beam_search: espnet.nets.beam_search_transducer.BeamSearchTransducer) → List[source]

Recognize input features.

Parameters:
  • feats – Feature sequence. (F, D_feats)

  • beam_search – Beam search class.

Returns:

N-best decoding results.

Return type:

nbest_hyps

static training_add_custom_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add arguments for Custom architecture training.

static transducer_add_arguments(parser: argparse.ArgumentParser) → argparse.ArgumentParser[source]

Add arguments for Transducer model.

class espnet.nets.pytorch_backend.e2e_asr_transducer.Reporter(**links)[source]

Bases: chainer.link.Chain

A chainer reporter wrapper for Transducer models.

report(loss: float, loss_trans: float, loss_ctc: float, loss_aux_trans: float, loss_symm_kl_div: float, loss_lm: float, cer: float, wer: float)[source]

Instantiate reporter attributes.

Parameters:
  • loss – Model loss.

  • loss_trans – Main Transducer loss.

  • loss_ctc – CTC loss.

  • loss_aux_trans – Auxiliary Transducer loss.

  • loss_symm_kl_div – Symmetric KL-divergence loss.

  • loss_lm – Label smoothing loss.

  • cer – Character Error Rate.

  • wer – Word Error Rate.

espnet.nets.pytorch_backend.__init__

Initialize sub package.

espnet.nets.pytorch_backend.e2e_st_conformer

Conformer speech translation model (pytorch).

It is a fusion of e2e_st_transformer.py Refer to: https://arxiv.org/abs/2005.08100

class espnet.nets.pytorch_backend.e2e_st_conformer.E2E(idim, odim, args, ignore_id=-1)[source]

Bases: espnet.nets.pytorch_backend.e2e_st_transformer.E2E

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

static add_conformer_arguments(parser)[source]

Add arguments for conformer model.

espnet.nets.pytorch_backend.e2e_st

RNN sequence-to-sequence speech translation model (pytorch).

class espnet.nets.pytorch_backend.e2e_st.E2E(idim, odim, args)[source]

Bases: espnet.nets.st_interface.STInterface, torch.nn.modules.module.Module

E2E module.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

Construct an E2E object.

Parameters:
  • idim (int) – dimension of inputs

  • odim (int) – dimension of outputs

  • args (Namespace) – argument Namespace containing options

static add_arguments(parser)[source]

Add arguments.

static attention_add_arguments(parser)[source]

Add arguments for the attention.

calculate_all_attentions(xs_pad, ilens, ys_pad, ys_pad_src)[source]

E2E attention calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

  • ys_pad_src (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) other case => attention weights (B, Lmax, Tmax).

Return type:

float ndarray

calculate_all_ctc_probs(xs_pad, ilens, ys_pad, ys_pad_src)[source]

E2E CTC probability calculation.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

:param torch.Tensor

ys_pad_src: batch of padded token id sequence tensor (B, Lmax)

Returns:

CTC probability (B, Tmax, vocab)

Return type:

float ndarray

static decoder_add_arguments(parser)[source]

Add arguments for the decoder.

encode(x)[source]

Encode acoustic features.

Parameters:

x (ndarray) – input acoustic feature (T, D)

Returns:

encoder outputs

Return type:

torch.Tensor

static encoder_add_arguments(parser)[source]

Add arguments for the encoder.

forward(xs_pad, ilens, ys_pad, ys_pad_src)[source]

E2E forward.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded token id sequence tensor (B, Lmax)

Returns:

loss value

Return type:

torch.Tensor

forward_asr(hs_pad, hlens, ys_pad)[source]

Forward pass in the auxiliary ASR task.

Parameters:
  • hs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax, idim)

  • hlens (torch.Tensor) – batch of lengths of input sequences (B)

  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

Returns:

ASR attention loss value

Return type:

torch.Tensor

Returns:

accuracy in ASR attention decoder

Return type:

float

Returns:

ASR CTC loss value

Return type:

torch.Tensor

Returns:

character error rate from CTC prediction

Return type:

float

Returns:

character error rate from attetion decoder prediction

Return type:

float

Returns:

word error rate from attetion decoder prediction

Return type:

float

forward_mt(xs_pad, ys_pad)[source]

Forward pass in the auxiliary MT task.

Parameters:
  • xs_pad (torch.Tensor) – batch of padded source sequences (B, Tmax, idim)

  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

Returns:

MT loss value

Return type:

torch.Tensor

Returns:

accuracy in MT decoder

Return type:

float

get_total_subsampling_factor()[source]

Get total subsampling factor.

init_like_chainer()[source]

Initialize weight like chainer.

chainer basically uses LeCun way: W ~ Normal(0, fan_in ** -0.5), b = 0 pytorch basically uses W, b ~ Uniform(-fan_in**-0.5, fan_in**-0.5) however, there are two exceptions as far as I know. - EmbedID.W ~ Normal(0, 1) - LSTM.upward.b[forget_gate_range] = 1 (but not used in NStepLSTM)

scorers()[source]

Scorers.

subsample_frames(x)[source]

Subsample speeh frames in the encoder.

translate(x, trans_args, char_list, rnnlm=None)[source]

E2E beam search.

Parameters:
  • x (ndarray) – input acoustic feature (T, D)

  • trans_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

translate_batch(xs, trans_args, char_list, rnnlm=None)[source]

E2E batch beam search.

Parameters:
  • xs (list) – list of input acoustic feature arrays [(T_1, D), (T_2, D), …]

  • trans_args (Namespace) – argument Namespace containing options

  • char_list (list) – list of characters

  • rnnlm (torch.nn.Module) – language model module

Returns:

N-best decoding results

Return type:

list

class espnet.nets.pytorch_backend.e2e_st.Reporter(**links)[source]

Bases: chainer.link.Chain

A chainer reporter wrapper.

report(loss_asr, loss_mt, loss_st, acc_asr, acc_mt, acc, cer_ctc, cer, wer, bleu, mtl_loss)[source]

Report at every step.

espnet.nets.pytorch_backend.e2e_vc_tacotron2

Tacotron2-VC related modules.

class espnet.nets.pytorch_backend.e2e_vc_tacotron2.Tacotron2(idim, odim, args=None)[source]

Bases: espnet.nets.tts_interface.TTSInterface, torch.nn.modules.module.Module

VC Tacotron2 module for VC.

This is a module of Tacotron2-based VC model, which convert the sequence of acoustic features into the sequence of acoustic features.

Initialize Tacotron2 module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • args (Namespace, optional) –

    • spk_embed_dim (int): Dimension of the speaker embedding.

    • elayers (int): The number of encoder blstm layers.

    • eunits (int): The number of encoder blstm units.

    • econv_layers (int): The number of encoder conv layers.

    • econv_filts (int): The number of encoder conv filter size.

    • econv_chans (int): The number of encoder conv filter channels.

    • dlayers (int): The number of decoder lstm layers.

    • dunits (int): The number of decoder lstm units.

    • prenet_layers (int): The number of prenet layers.

    • prenet_units (int): The number of prenet units.

    • postnet_layers (int): The number of postnet layers.

    • postnet_filts (int): The number of postnet filter size.

    • postnet_chans (int): The number of postnet filter channels.

    • output_activation (int): The name of activation function for outputs.

    • adim (int): The number of dimension of mlp in attention.

    • aconv_chans (int): The number of attention conv filter channels.

    • aconv_filts (int): The number of attention conv filter size.

    • cumulate_att_w (bool): Whether to cumulate previous attention weight.

    • use_batch_norm (bool): Whether to use batch normalization.

    • use_concate (int):

      Whether to concatenate encoder embedding with decoder lstm outputs.

    • dropout_rate (float): Dropout rate.

    • zoneout_rate (float): Zoneout rate.

    • reduction_factor (int): Reduction factor.

    • spk_embed_dim (int): Number of speaker embedding dimenstions.

    • spc_dim (int): Number of spectrogram embedding dimenstions

      (only for use_cbhg=True).

    • use_cbhg (bool): Whether to use CBHG module.

    • cbhg_conv_bank_layers (int):

      The number of convoluional banks in CBHG.

    • cbhg_conv_bank_chans (int):

      The number of channels of convolutional bank in CBHG.

    • cbhg_proj_filts (int):

      The number of filter size of projection layeri in CBHG.

    • cbhg_proj_chans (int):

      The number of channels of projection layer in CBHG.

    • cbhg_highway_layers (int):

      The number of layers of highway network in CBHG.

    • cbhg_highway_units (int):

      The number of units of highway network in CBHG.

    • cbhg_gru_units (int): The number of units of GRU in CBHG.

    • use_masking (bool): Whether to mask padded part in loss calculation.

    • bce_pos_weight (float): Weight of positive sample of stop token

      (only for use_masking=True).

    • use-guided-attn-loss (bool): Whether to use guided attention loss.

    • guided-attn-loss-sigma (float) Sigma in guided attention loss.

    • guided-attn-loss-lamdba (float): Lambda in guided attention loss.

static add_arguments(parser)[source]

Add model-specific arguments to the parser.

property base_plot_keys

Return base key names to plot during training.

keys should match what chainer.reporter reports. If you add the key loss, the reporter will report main/loss

and validation/main/loss values.

also loss.png will be created as a figure visulizing main/loss

and validation/main/loss values.

Returns:

List of strings which are base keys to plot during training.

Return type:

list

calculate_all_attentions(xs, ilens, ys, spembs=None, *args, **kwargs)[source]

Calculate all of the attention weights.

Parameters:
  • xs (Tensor) – Batch of padded acoustic features (B, Tmax, idim).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

Returns:

Batch of attention weights (B, Lmax, Tmax).

Return type:

numpy.ndarray

forward(xs, ilens, ys, labels, olens, spembs=None, spcs=None, *args, **kwargs)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of padded acoustic features (B, Tmax, idim).

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of padded target features (B, Lmax, odim).

  • olens (LongTensor) – Batch of the lengths of each target (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

  • spcs (Tensor, optional) – Batch of groundtruth spectrograms (B, Lmax, spc_dim).

Returns:

Loss value.

Return type:

Tensor

inference(x, inference_args, spemb=None, *args, **kwargs)[source]

Generate the sequence of features given the sequences of characters.

Parameters:
  • x (Tensor) – Input sequence of acoustic features (T, idim).

  • inference_args (Namespace) –

    • threshold (float): Threshold in inference.

    • minlenratio (float): Minimum length ratio in inference.

    • maxlenratio (float): Maximum length ratio in inference.

  • spemb (Tensor, optional) – Speaker embedding vector (spk_embed_dim).

Returns:

Output sequence of features (L, odim). Tensor: Output sequence of stop probabilities (L,). Tensor: Attention weights (L, T).

Return type:

Tensor

espnet.nets.pytorch_backend.tacotron2.encoder

Tacotron2 encoder related modules.

class espnet.nets.pytorch_backend.tacotron2.encoder.Encoder(idim, input_layer='embed', embed_dim=512, elayers=1, eunits=512, econv_layers=3, econv_chans=512, econv_filts=5, use_batch_norm=True, use_residual=False, dropout_rate=0.5, padding_idx=0)[source]

Bases: torch.nn.modules.module.Module

Encoder module of Spectrogram prediction network.

This is a module of encoder of Spectrogram prediction network in Tacotron2, which described in Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. This is the encoder which converts either a sequence of characters or acoustic features into the sequence of hidden states.

Initialize Tacotron2 encoder module.

Parameters:
  • idim (int) –

  • input_layer (str) – Input layer type.

  • embed_dim (int, optional) –

  • elayers (int, optional) –

  • eunits (int, optional) –

  • econv_layers (int, optional) –

  • econv_filts (int, optional) –

  • econv_chans (int, optional) –

  • use_batch_norm (bool, optional) –

  • use_residual (bool, optional) –

  • dropout_rate (float, optional) –

forward(xs, ilens=None)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of the padded sequence. Either character ids (B, Tmax) or acoustic feature (B, Tmax, idim * encoder_reduction_factor). Padded value should be 0.

  • ilens (LongTensor) – Batch of lengths of each input batch (B,).

Returns:

Batch of the sequences of encoder states(B, Tmax, eunits). LongTensor: Batch of lengths of each sequence (B,)

Return type:

Tensor

inference(x)[source]

Inference.

Parameters:

x (Tensor) – The sequeunce of character ids (T,) or acoustic feature (T, idim * encoder_reduction_factor).

Returns:

The sequences of encoder states(T, eunits).

Return type:

Tensor

espnet.nets.pytorch_backend.tacotron2.encoder.encoder_init(m)[source]

Initialize encoder parameters.

espnet.nets.pytorch_backend.tacotron2.decoder

Tacotron2 decoder related modules.

class espnet.nets.pytorch_backend.tacotron2.decoder.Decoder(idim, odim, att, dlayers=2, dunits=1024, prenet_layers=2, prenet_units=256, postnet_layers=5, postnet_chans=512, postnet_filts=5, output_activation_fn=None, cumulate_att_w=True, use_batch_norm=True, use_concate=True, dropout_rate=0.5, zoneout_rate=0.1, reduction_factor=1)[source]

Bases: torch.nn.modules.module.Module

Decoder module of Spectrogram prediction network.

This is a module of decoder of Spectrogram prediction network in Tacotron2, which described in Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. The decoder generates the sequence of features from the sequence of the hidden states.

Initialize Tacotron2 decoder module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • att (torch.nn.Module) – Instance of attention class.

  • dlayers (int, optional) – The number of decoder lstm layers.

  • dunits (int, optional) – The number of decoder lstm units.

  • prenet_layers (int, optional) – The number of prenet layers.

  • prenet_units (int, optional) – The number of prenet units.

  • postnet_layers (int, optional) – The number of postnet layers.

  • postnet_filts (int, optional) – The number of postnet filter size.

  • postnet_chans (int, optional) – The number of postnet filter channels.

  • output_activation_fn (torch.nn.Module, optional) – Activation function for outputs.

  • cumulate_att_w (bool, optional) – Whether to cumulate previous attention weight.

  • use_batch_norm (bool, optional) – Whether to use batch normalization.

  • use_concate (bool, optional) – Whether to concatenate encoder embedding with decoder lstm outputs.

  • dropout_rate (float, optional) – Dropout rate.

  • zoneout_rate (float, optional) – Zoneout rate.

  • reduction_factor (int, optional) – Reduction factor.

calculate_all_attentions(hs, hlens, ys)[source]

Calculate all of the attention weights.

Parameters:
  • hs (Tensor) – Batch of the sequences of padded hidden states (B, Tmax, idim).

  • hlens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of the sequences of padded target features (B, Lmax, odim).

Returns:

Batch of attention weights (B, Lmax, Tmax).

Return type:

numpy.ndarray

Note

This computation is performed in teacher-forcing manner.

forward(hs, hlens, ys)[source]

Calculate forward propagation.

Parameters:
  • hs (Tensor) – Batch of the sequences of padded hidden states (B, Tmax, idim).

  • hlens (LongTensor) – Batch of lengths of each input batch (B,).

  • ys (Tensor) – Batch of the sequences of padded target features (B, Lmax, odim).

Returns:

Batch of output tensors after postnet (B, Lmax, odim). Tensor: Batch of output tensors before postnet (B, Lmax, odim). Tensor: Batch of logits of stop prediction (B, Lmax). Tensor: Batch of attention weights (B, Lmax, Tmax).

Return type:

Tensor

Note

This computation is performed in teacher-forcing manner.

inference(h, threshold=0.5, minlenratio=0.0, maxlenratio=10.0, use_att_constraint=False, backward_window=None, forward_window=None)[source]

Generate the sequence of features given the sequences of characters.

Parameters:
  • h (Tensor) – Input sequence of encoder hidden states (T, C).

  • threshold (float, optional) – Threshold to stop generation.

  • minlenratio (float, optional) – Minimum length ratio. If set to 1.0 and the length of input is 10, the minimum length of outputs will be 10 * 1 = 10.

  • minlenratio – Minimum length ratio. If set to 10 and the length of input is 10, the maximum length of outputs will be 10 * 10 = 100.

  • use_att_constraint (bool) – Whether to apply attention constraint introduced in Deep Voice 3.

  • backward_window (int) – Backward window size in attention constraint.

  • forward_window (int) – Forward window size in attention constraint.

Returns:

Output sequence of features (L, odim). Tensor: Output sequence of stop probabilities (L,). Tensor: Attention weights (L, T).

Return type:

Tensor

Note

This computation is performed in auto-regressive manner.

class espnet.nets.pytorch_backend.tacotron2.decoder.Postnet(idim, odim, n_layers=5, n_chans=512, n_filts=5, dropout_rate=0.5, use_batch_norm=True)[source]

Bases: torch.nn.modules.module.Module

Postnet module for Spectrogram prediction network.

This is a module of Postnet in Spectrogram prediction network, which described in Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. The Postnet predicts refines the predicted Mel-filterbank of the decoder, which helps to compensate the detail structure of spectrogram.

Initialize postnet module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • n_layers (int, optional) – The number of layers.

  • n_filts (int, optional) – The number of filter size.

  • n_units (int, optional) – The number of filter channels.

  • use_batch_norm (bool, optional) – Whether to use batch normalization..

  • dropout_rate (float, optional) – Dropout rate..

forward(xs)[source]

Calculate forward propagation.

Parameters:

xs (Tensor) – Batch of the sequences of padded input tensors (B, idim, Tmax).

Returns:

Batch of padded output tensor. (B, odim, Tmax).

Return type:

Tensor

class espnet.nets.pytorch_backend.tacotron2.decoder.Prenet(idim, n_layers=2, n_units=256, dropout_rate=0.5)[source]

Bases: torch.nn.modules.module.Module

Prenet module for decoder of Spectrogram prediction network.

This is a module of Prenet in the decoder of Spectrogram prediction network, which described in Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. The Prenet preforms nonlinear conversion of inputs before input to auto-regressive lstm, which helps to learn diagonal attentions.

Note

This module alway applies dropout even in evaluation. See the detail in Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions.

Initialize prenet module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • n_layers (int, optional) – The number of prenet layers.

  • n_units (int, optional) – The number of prenet units.

forward(x)[source]

Calculate forward propagation.

Parameters:

x (Tensor) – Batch of input tensors (B, …, idim).

Returns:

Batch of output tensors (B, …, odim).

Return type:

Tensor

class espnet.nets.pytorch_backend.tacotron2.decoder.ZoneOutCell(cell, zoneout_rate=0.1)[source]

Bases: torch.nn.modules.module.Module

ZoneOut Cell module.

This is a module of zoneout described in Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations. This code is modified from eladhoffer/seq2seq.pytorch.

Examples

>>> lstm = torch.nn.LSTMCell(16, 32)
>>> lstm = ZoneOutCell(lstm, 0.5)

Initialize zone out cell module.

Parameters:
  • cell (torch.nn.Module) – Pytorch recurrent cell module e.g. torch.nn.Module.LSTMCell.

  • zoneout_rate (float, optional) – Probability of zoneout from 0.0 to 1.0.

forward(inputs, hidden)[source]

Calculate forward propagation.

Parameters:
  • inputs (Tensor) – Batch of input tensor (B, input_size).

  • hidden (tuple) –

    • Tensor: Batch of initial hidden states (B, hidden_size).

    • Tensor: Batch of initial cell states (B, hidden_size).

Returns:

  • Tensor: Batch of next hidden states (B, hidden_size).

  • Tensor: Batch of next cell states (B, hidden_size).

Return type:

tuple

espnet.nets.pytorch_backend.tacotron2.decoder.decoder_init(m)[source]

Initialize decoder parameters.

espnet.nets.pytorch_backend.tacotron2.__init__

Initialize sub package.

espnet.nets.pytorch_backend.tacotron2.cbhg

CBHG related modules.

class espnet.nets.pytorch_backend.tacotron2.cbhg.CBHG(idim, odim, conv_bank_layers=8, conv_bank_chans=128, conv_proj_filts=3, conv_proj_chans=256, highway_layers=4, highway_units=128, gru_units=256)[source]

Bases: torch.nn.modules.module.Module

CBHG module to convert log Mel-filterbanks to linear spectrogram.

This is a module of CBHG introduced in Tacotron: Towards End-to-End Speech Synthesis. The CBHG converts the sequence of log Mel-filterbanks into linear spectrogram.

Initialize CBHG module.

Parameters:
  • idim (int) – Dimension of the inputs.

  • odim (int) – Dimension of the outputs.

  • conv_bank_layers (int, optional) – The number of convolution bank layers.

  • conv_bank_chans (int, optional) – The number of channels in convolution bank.

  • conv_proj_filts (int, optional) – Kernel size of convolutional projection layer.

  • conv_proj_chans (int, optional) – The number of channels in convolutional projection layer.

  • highway_layers (int, optional) – The number of highway network layers.

  • highway_units (int, optional) – The number of highway network units.

  • gru_units (int, optional) – The number of GRU units (for both directions).

forward(xs, ilens)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of the padded sequences of inputs (B, Tmax, idim).

  • ilens (LongTensor) – Batch of lengths of each input sequence (B,).

Returns:

Batch of the padded sequence of outputs (B, Tmax, odim). LongTensor: Batch of lengths of each output sequence (B,).

Return type:

Tensor

inference(x)[source]

Inference.

Parameters:

x (Tensor) – The sequences of inputs (T, idim).

Returns:

The sequence of outputs (T, odim).

Return type:

Tensor

class espnet.nets.pytorch_backend.tacotron2.cbhg.CBHGLoss(use_masking=True)[source]

Bases: torch.nn.modules.module.Module

Loss function module for CBHG.

Initialize CBHG loss module.

Parameters:

use_masking (bool) – Whether to mask padded part in loss calculation.

forward(cbhg_outs, spcs, olens)[source]

Calculate forward propagation.

Parameters:
  • cbhg_outs (Tensor) – Batch of CBHG outputs (B, Lmax, spc_dim).

  • spcs (Tensor) – Batch of groundtruth of spectrogram (B, Lmax, spc_dim).

  • olens (LongTensor) – Batch of the lengths of each sequence (B,).

Returns:

L1 loss value Tensor: Mean square error loss value.

Return type:

Tensor

class espnet.nets.pytorch_backend.tacotron2.cbhg.HighwayNet(idim)[source]

Bases: torch.nn.modules.module.Module

Highway Network module.

This is a module of Highway Network introduced in Highway Networks.

Initialize Highway Network module.

Parameters:

idim (int) – Dimension of the inputs.

forward(x)[source]

Calculate forward propagation.

Parameters:

x (Tensor) – Batch of inputs (B, …, idim).

Returns:

Batch of outputs, which are the same shape as inputs (B, …, idim).

Return type:

Tensor

espnet.nets.pytorch_backend.fastspeech.length_regulator

Length regulator related modules.

class espnet.nets.pytorch_backend.fastspeech.length_regulator.LengthRegulator(pad_value=0.0)[source]

Bases: torch.nn.modules.module.Module

Length regulator module for feed-forward Transformer.

This is a module of length regulator described in FastSpeech: Fast, Robust and Controllable Text to Speech. The length regulator expands char or phoneme-level embedding features to frame-level by repeating each feature based on the corresponding predicted durations.

Initilize length regulator module.

Parameters:

pad_value (float, optional) – Value used for padding.

forward(xs, ds, alpha=1.0)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of sequences of char or phoneme embeddings (B, Tmax, D).

  • ds (LongTensor) – Batch of durations of each frame (B, T).

  • alpha (float, optional) – Alpha value to control speed of speech.

Returns:

replicated input tensor based on durations (B, T*, D).

Return type:

Tensor

espnet.nets.pytorch_backend.fastspeech.duration_predictor

Duration predictor related modules.

class espnet.nets.pytorch_backend.fastspeech.duration_predictor.DurationPredictor(idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0)[source]

Bases: torch.nn.modules.module.Module

Duration predictor module.

This is a module of duration predictor described in FastSpeech: Fast, Robust and Controllable Text to Speech. The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder.

Note

The calculation domain of outputs is different between in forward and in inference. In forward, the outputs are calculated in log domain but in inference, those are calculated in linear domain.

Initilize duration predictor module.

Parameters:
  • idim (int) – Input dimension.

  • n_layers (int, optional) – Number of convolutional layers.

  • n_chans (int, optional) – Number of channels of convolutional layers.

  • kernel_size (int, optional) – Kernel size of convolutional layers.

  • dropout_rate (float, optional) – Dropout rate.

  • offset (float, optional) – Offset value to avoid nan in log domain.

forward(xs, x_masks=None)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of input sequences (B, Tmax, idim).

  • x_masks (ByteTensor, optional) – Batch of masks indicating padded part (B, Tmax).

Returns:

Batch of predicted durations in log domain (B, Tmax).

Return type:

Tensor

inference(xs, x_masks=None)[source]

Inference duration.

Parameters:
  • xs (Tensor) – Batch of input sequences (B, Tmax, idim).

  • x_masks (ByteTensor, optional) – Batch of masks indicating padded part (B, Tmax).

Returns:

Batch of predicted durations in linear domain (B, Tmax).

Return type:

LongTensor

class espnet.nets.pytorch_backend.fastspeech.duration_predictor.DurationPredictorLoss(offset=1.0, reduction='mean')[source]

Bases: torch.nn.modules.module.Module

Loss function module for duration predictor.

The loss value is Calculated in log domain to make it Gaussian.

Initilize duration predictor loss module.

Parameters:
  • offset (float, optional) – Offset value to avoid nan in log domain.

  • reduction (str) – Reduction type in loss calculation.

forward(outputs, targets)[source]

Calculate forward propagation.

Parameters:
  • outputs (Tensor) – Batch of prediction durations in log domain (B, T)

  • targets (LongTensor) – Batch of groundtruth durations in linear domain (B, T)

Returns:

Mean squared error loss value.

Return type:

Tensor

Note

outputs is in log domain but targets is in linear domain.

espnet.nets.pytorch_backend.fastspeech.__init__

Initialize sub package.

espnet.nets.pytorch_backend.fastspeech.duration_calculator

Duration calculator related modules.

class espnet.nets.pytorch_backend.fastspeech.duration_calculator.DurationCalculator(teacher_model)[source]

Bases: torch.nn.modules.module.Module

Duration calculator module for FastSpeech.

Initialize duration calculator module.

Parameters:

teacher_model (e2e_tts_transformer.Transformer) – Pretrained auto-regressive Transformer.

forward(xs, ilens, ys, olens, spembs=None)[source]

Calculate forward propagation.

Parameters:
  • xs (Tensor) – Batch of the padded sequences of character ids (B, Tmax).

  • ilens (Tensor) – Batch of lengths of each input sequence (B,).

  • ys (Tensor) – Batch of the padded sequence of target features (B, Lmax, odim).

  • olens (Tensor) – Batch of lengths of each output sequence (B,).

  • spembs (Tensor, optional) – Batch of speaker embedding vectors (B, spk_embed_dim).

Returns:

Batch of durations (B, Tmax).

Return type:

Tensor

espnet.nets.pytorch_backend.conformer.encoder_layer

Encoder self-attention layer definition.

class espnet.nets.pytorch_backend.conformer.encoder_layer.EncoderLayer(size, self_attn, feed_forward, feed_forward_macaron, conv_module, dropout_rate, normalize_before=True, concat_after=False, stochastic_depth_rate=0.0)[source]

Bases: torch.nn.modules.module.Module

Encoder layer module.

Parameters:
  • size (int) – Input dimension.

  • self_attn (torch.nn.Module) – Self-attention module instance. MultiHeadedAttention or RelPositionMultiHeadedAttention instance can be used as the argument.

  • feed_forward (torch.nn.Module) – Feed-forward module instance. PositionwiseFeedForward, MultiLayeredConv1d, or Conv1dLinear instance can be used as the argument.

  • feed_forward_macaron (torch.nn.Module) – Additional feed-forward module instance. PositionwiseFeedForward, MultiLayeredConv1d, or Conv1dLinear instance can be used as the argument.

  • conv_module (torch.nn.Module) – Convolution module instance. ConvlutionModule instance can be used as the argument.

  • dropout_rate (float) – Dropout rate.

  • normalize_before (bool) – Whether to use layer_norm before the first block.

  • concat_after (bool) – Whether to concat attention layer’s input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

  • stochastic_depth_rate (float) – Proability to skip this layer. During training, the layer may skip residual computation and return input as-is with given probability.

Construct an EncoderLayer object.

forward(x_input, mask, cache=None)[source]

Compute encoded features.

Parameters:
  • x_input (Union[Tuple, torch.Tensor]) – Input tensor w/ or w/o pos emb. - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)]. - w/o pos emb: Tensor (#batch, time, size).

  • mask (torch.Tensor) – Mask tensor for the input (#batch, 1, time).

  • cache (torch.Tensor) – Cache tensor of the input (#batch, time - 1, size).

Returns:

Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, 1, time).

Return type:

torch.Tensor

espnet.nets.pytorch_backend.conformer.encoder

Encoder definition.

class espnet.nets.pytorch_backend.conformer.encoder.Encoder(idim, attention_dim=256, attention_heads=4, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, attention_dropout_rate=0.0, input_layer='conv2d', normalize_before=True, concat_after=False, positionwise_layer_type='linear', positionwise_conv_kernel_size=1, macaron_style=False, pos_enc_layer_type='abs_pos', selfattention_layer_type='selfattn', activation_type='swish', use_cnn_module=False, zero_triu=False, cnn_module_kernel=31, padding_idx=-1, stochastic_depth_rate=0.0, intermediate_layers=None, ctc_softmax=None, conditioning_layer_dim=None)[source]

Bases: torch.nn.modules.module.Module

Conformer encoder module.

Parameters:
  • idim (int) – Input dimension.

  • attention_dim (int) – Dimension of attention.

  • attention_heads (int) – The number of heads of multi head attention.

  • linear_units (int) – The number of units of position-wise feed forward.

  • num_blocks (int) – The number of decoder blocks.

  • dropout_rate (float) – Dropout rate.

  • positional_dropout_rate (float) – Dropout rate after adding positional encoding.

  • attention_dropout_rate (float) – Dropout rate in attention.

  • input_layer (Union[str, torch.nn.Module]) – Input layer type.

  • normalize_before (bool) – Whether to use layer_norm before the first block.

  • concat_after (bool) – Whether to concat attention layer’s input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

  • positionwise_layer_type (str) – “linear”, “conv1d”, or “conv1d-linear”.

  • positionwise_conv_kernel_size (int) – Kernel size of positionwise conv1d layer.

  • macaron_style (bool) – Whether to use macaron style for positionwise layer.

  • pos_enc_layer_type (str) – Encoder positional encoding layer type.

  • selfattention_layer_type (str) – Encoder attention layer type.

  • activation_type (str) – Encoder activation function type.

  • use_cnn_module (bool) – Whether to use convolution module.

  • zero_triu (bool) – Whether to zero the upper triangular part of attention matrix.

  • cnn_module_kernel (int) – Kernerl size of convolution module.

  • padding_idx (int) – Padding idx for input_layer=embed.

  • stochastic_depth_rate (float) – Maximum probability to skip the encoder layer.

  • intermediate_layers (Union[List[int], None]) – indices of intermediate CTC layer. indices start from 1. if not None, intermediate outputs are returned (which changes return type signature.)

Construct an Encoder object.

forward(xs, masks)[source]

Encode input sequence.

Parameters:
  • xs (torch.Tensor) – Input tensor (#batch, time, idim).

  • masks (torch.Tensor) – Mask tensor (#batch, 1, time).

Returns:

Output tensor (#batch, time, attention_dim). torch.Tensor: Mask tensor (#batch, 1, time).

Return type:

torch.Tensor

espnet.nets.pytorch_backend.conformer.convolution

ConvolutionModule definition.

class espnet.nets.pytorch_backend.conformer.convolution.ConvolutionModule(channels, kernel_size, activation=ReLU(), bias=True)[source]

Bases: torch.nn.modules.module.Module

ConvolutionModule in Conformer model.

Parameters:
  • channels (int) – The number of channels of conv layers.

  • kernel_size (int) – Kernerl size of conv layers.

Construct an ConvolutionModule object.

forward(x)[source]

Compute convolution module.

Parameters:

x (torch.Tensor) – Input tensor (#batch, time, channels).

Returns:

Output tensor (#batch, time, channels).

Return type:

torch.Tensor

espnet.nets.pytorch_backend.conformer.__init__

Initialize sub package.

espnet.nets.pytorch_backend.conformer.contextual_block_encoder_layer

Created on Sat Aug 21 16:57:31 2021.

@author: Keqi Deng (UCAS)

class espnet.nets.pytorch_backend.conformer.contextual_block_encoder_layer.ContextualBlockEncoderLayer(size, self_attn, feed_forward, feed_forward_macaron, conv_module, dropout_rate, total_layer_num, normalize_before=True, concat_after=False)[source]

Bases: torch.nn.modules.module.Module

Contexutal Block Encoder layer module.

Parameters:
  • size (int) – Input dimension.

  • self_attn (torch.nn.Module) – Self-attention module instance. MultiHeadedAttention or RelPositionMultiHeadedAttention instance can be used as the argument.

  • feed_forward (torch.nn.Module) – Feed-forward module instance. PositionwiseFeedForward, MultiLayeredConv1d, or Conv1dLinear instance can be used as the argument.

  • feed_forward_macaron (torch.nn.Module) – Additional feed-forward module instance. PositionwiseFeedForward, MultiLayeredConv1d, or Conv1dLinear instance can be used as the argument.

  • conv_module (torch.nn.Module) – Convolution module instance. ConvlutionModule instance can be used as the argument.

  • dropout_rate (float) – Dropout rate.

  • total_layer_num (int) – Total number of layers

  • normalize_before (bool) – Whether to use layer_norm before the first block.

  • concat_after (bool) – Whether to concat attention layer’s input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

Construct an EncoderLayer object.

forward(x, mask, infer_mode=False, past_ctx=None, next_ctx=None, is_short_segment=False, layer_idx=0, cache=None)[source]

Calculate forward propagation.

forward_infer(x, mask, past_ctx=None, next_ctx=None, is_short_segment=False, layer_idx=0, cache=None)[source]

Compute encoded features.

Parameters:
  • x_input (torch.Tensor) – Input tensor (#batch, time, size).

  • mask (torch.Tensor) – Mask tensor for the input (#batch, 1, time).

  • past_ctx (torch.Tensor) – Previous contexutal vector

  • next_ctx (torch.Tensor) – Next contexutal vector

  • cache (torch.Tensor) – Cache tensor of the input (#batch, time - 1, size).

Returns:

Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, 1, time). cur_ctx (torch.Tensor): Current contexutal vector next_ctx (torch.Tensor): Next contexutal vector layer_idx (int): layer index number

Return type:

torch.Tensor

forward_train(x, mask, past_ctx=None, next_ctx=None, layer_idx=0, cache=None)[source]

Compute encoded features.

Parameters:
  • x_input (torch.Tensor) – Input tensor (#batch, time, size).

  • mask (torch.Tensor) – Mask tensor for the input (#batch, time).

  • past_ctx (torch.Tensor) – Previous contexutal vector

  • next_ctx (torch.Tensor) – Next contexutal vector

  • cache (torch.Tensor) – Cache tensor of the input (#batch, time - 1, size).

Returns:

Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, time). cur_ctx (torch.Tensor): Current contexutal vector next_ctx (torch.Tensor): Next contexutal vector layer_idx (int): layer index number

Return type:

torch.Tensor

espnet.nets.pytorch_backend.conformer.swish

Swish() activation function for Conformer.

class espnet.nets.pytorch_backend.conformer.swish.Swish[source]

Bases: torch.nn.modules.module.Module

Construct an Swish object.

Initializes internal Module state, shared by both nn.Module and ScriptModule.

forward(x)[source]

Return Swich activation function.

espnet.nets.pytorch_backend.conformer.argument

Conformer common arguments.

espnet.nets.pytorch_backend.conformer.argument.add_arguments_conformer_common(group)[source]

Add Transformer common arguments.

espnet.nets.pytorch_backend.conformer.argument.verify_rel_pos_type(args)[source]

Verify the relative positional encoding type for compatibility.

Parameters:

args (Namespace) – original arguments

Returns:

modified arguments

Return type:

args (Namespace)

espnet.nets.pytorch_backend.maskctc.add_mask_token

Token masking module for Masked LM.

espnet.nets.pytorch_backend.maskctc.add_mask_token.mask_uniform(ys_pad, mask_token, eos, ignore_id)[source]

Replace random tokens with <mask> label and add <eos> label.

The number of <mask> is chosen from a uniform distribution between one and the target sequence’s length. :param torch.Tensor ys_pad: batch of padded target sequences (B, Lmax) :param int mask_token: index of <mask> :param int eos: index of <eos> :param int ignore_id: index of padding :return: padded tensor (B, Lmax) :rtype: torch.Tensor :return: padded tensor (B, Lmax) :rtype: torch.Tensor

espnet.nets.pytorch_backend.maskctc.__init__

Initialize sub package.

espnet.nets.pytorch_backend.maskctc.mask

Attention masking module for Masked LM.

espnet.nets.pytorch_backend.maskctc.mask.square_mask(ys_in_pad, ignore_id)[source]

Create attention mask to avoid attending on padding tokens.

Parameters:
  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

  • ignore_id (int) – index of padding

  • dtype (torch.dtype) – result dtype

Return type:

torch.Tensor (B, Lmax, Lmax)

espnet.nets.pytorch_backend.transformer.dynamic_conv

Dynamic Convolution module.

class espnet.nets.pytorch_backend.transformer.dynamic_conv.DynamicConvolution(wshare, n_feat, dropout_rate, kernel_size, use_kernel_mask=False, use_bias=False)[source]

Bases: torch.nn.modules.module.Module

Dynamic Convolution layer.

This implementation is based on https://github.com/pytorch/fairseq/tree/master/fairseq

Parameters:
  • wshare (int) – the number of kernel of convolution

  • n_feat (int) – the number of features

  • dropout_rate (float) – dropout_rate

  • kernel_size (int) – kernel size (length)

  • use_kernel_mask (bool) – Use causal mask or not for convolution kernel

  • use_bias (bool) – Use bias term or not.

Construct Dynamic Convolution layer.

forward(query, key, value, mask)[source]

Forward of ‘Dynamic Convolution’.

This function takes query, key and value but uses only quert. This is just for compatibility with self-attention layer (attention.py)

Parameters:
  • query (torch.Tensor) – (batch, time1, d_model) input tensor

  • key (torch.Tensor) – (batch, time2, d_model) NOT USED

  • value (torch.Tensor) – (batch, time2, d_model) NOT USED

  • mask (torch.Tensor) – (batch, time1, time2) mask

Returns:

(batch, time1, d_model) output

Return type:

x (torch.Tensor)

espnet.nets.pytorch_backend.transformer.encoder_layer

Encoder self-attention layer definition.

class espnet.nets.pytorch_backend.transformer.encoder_layer.EncoderLayer(size, self_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False, stochastic_depth_rate=0.0)[source]

Bases: torch.nn.modules.module.Module

Encoder layer module.

Parameters:
  • size (int) – Input dimension.

  • self_attn (torch.nn.Module) – Self-attention module instance. MultiHeadedAttention or RelPositionMultiHeadedAttention instance can be used as the argument.

  • feed_forward (torch.nn.Module) – Feed-forward module instance. PositionwiseFeedForward, MultiLayeredConv1d, or Conv1dLinear instance can be used as the argument.

  • dropout_rate (float) – Dropout rate.

  • normalize_before (bool) – Whether to use layer_norm before the first block.

  • concat_after (bool) – Whether to concat attention layer’s input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

  • stochastic_depth_rate (float) – Proability to skip this layer. During training, the layer may skip residual computation and return input as-is with given probability.

Construct an EncoderLayer object.

forward(x, mask, cache=None)[source]

Compute encoded features.

Parameters:
  • x_input (torch.Tensor) – Input tensor (#batch, time, size).

  • mask (torch.Tensor) – Mask tensor for the input (#batch, 1, time).

  • cache (torch.Tensor) – Cache tensor of the input (#batch, time - 1, size).

Returns:

Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, 1, time).

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.lightconv2d

Lightweight 2-Dimensional Convolution module.

class espnet.nets.pytorch_backend.transformer.lightconv2d.LightweightConvolution2D(wshare, n_feat, dropout_rate, kernel_size, use_kernel_mask=False, use_bias=False)[source]

Bases: torch.nn.modules.module.Module

Lightweight 2-Dimensional Convolution layer.

This implementation is based on https://github.com/pytorch/fairseq/tree/master/fairseq

Parameters:
  • wshare (int) – the number of kernel of convolution

  • n_feat (int) – the number of features

  • dropout_rate (float) – dropout_rate

  • kernel_size (int) – kernel size (length)

  • use_kernel_mask (bool) – Use causal mask or not for convolution kernel

  • use_bias (bool) – Use bias term or not.

Construct Lightweight 2-Dimensional Convolution layer.

forward(query, key, value, mask)[source]

Forward of ‘Lightweight 2-Dimensional Convolution’.

This function takes query, key and value but uses only query. This is just for compatibility with self-attention layer (attention.py)

Parameters:
  • query (torch.Tensor) – (batch, time1, d_model) input tensor

  • key (torch.Tensor) – (batch, time2, d_model) NOT USED

  • value (torch.Tensor) – (batch, time2, d_model) NOT USED

  • mask (torch.Tensor) – (batch, time1, time2) mask

Returns:

(batch, time1, d_model) output

Return type:

x (torch.Tensor)

espnet.nets.pytorch_backend.transformer.encoder

Encoder definition.

class espnet.nets.pytorch_backend.transformer.encoder.Encoder(idim, attention_dim=256, attention_heads=4, conv_wshare=4, conv_kernel_length='11', conv_usebias=False, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, attention_dropout_rate=0.0, input_layer='conv2d', pos_enc_class=<class 'espnet.nets.pytorch_backend.transformer.embedding.PositionalEncoding'>, normalize_before=True, concat_after=False, positionwise_layer_type='linear', positionwise_conv_kernel_size=1, selfattention_layer_type='selfattn', padding_idx=-1, stochastic_depth_rate=0.0, intermediate_layers=None, ctc_softmax=None, conditioning_layer_dim=None)[source]

Bases: torch.nn.modules.module.Module

Transformer encoder module.

Parameters:
  • idim (int) – Input dimension.

  • attention_dim (int) – Dimension of attention.

  • attention_heads (int) – The number of heads of multi head attention.

  • conv_wshare (int) – The number of kernel of convolution. Only used in selfattention_layer_type == “lightconv*” or “dynamiconv*”.

  • conv_kernel_length (Union[int, str]) – Kernel size str of convolution (e.g. 71_71_71_71_71_71). Only used in selfattention_layer_type == “lightconv*” or “dynamiconv*”.

  • conv_usebias (bool) – Whether to use bias in convolution. Only used in selfattention_layer_type == “lightconv*” or “dynamiconv*”.

  • linear_units (int) – The number of units of position-wise feed forward.

  • num_blocks (int) – The number of decoder blocks.

  • dropout_rate (float) – Dropout rate.

  • positional_dropout_rate (float) – Dropout rate after adding positional encoding.

  • attention_dropout_rate (float) – Dropout rate in attention.

  • input_layer (Union[str, torch.nn.Module]) – Input layer type.

  • pos_enc_class (torch.nn.Module) – Positional encoding module class. PositionalEncoding `or `ScaledPositionalEncoding

  • normalize_before (bool) – Whether to use layer_norm before the first block.

  • concat_after (bool) – Whether to concat attention layer’s input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

  • positionwise_layer_type (str) – “linear”, “conv1d”, or “conv1d-linear”.

  • positionwise_conv_kernel_size (int) – Kernel size of positionwise conv1d layer.

  • selfattention_layer_type (str) – Encoder attention layer type.

  • padding_idx (int) – Padding idx for input_layer=embed.

  • stochastic_depth_rate (float) – Maximum probability to skip the encoder layer.

  • intermediate_layers (Union[List[int], None]) – indices of intermediate CTC layer. indices start from 1. if not None, intermediate outputs are returned (which changes return type signature.)

Construct an Encoder object.

forward(xs, masks)[source]

Encode input sequence.

Parameters:
  • xs (torch.Tensor) – Input tensor (#batch, time, idim).

  • masks (torch.Tensor) – Mask tensor (#batch, 1, time).

Returns:

Output tensor (#batch, time, attention_dim). torch.Tensor: Mask tensor (#batch, 1, time).

Return type:

torch.Tensor

forward_one_step(xs, masks, cache=None)[source]

Encode input frame.

Parameters:
  • xs (torch.Tensor) – Input tensor.

  • masks (torch.Tensor) – Mask tensor.

  • cache (List[torch.Tensor]) – List of cache tensors.

Returns:

Output tensor. torch.Tensor: Mask tensor. List[torch.Tensor]: List of new cache tensors.

Return type:

torch.Tensor

get_positionwise_layer(positionwise_layer_type='linear', attention_dim=256, linear_units=2048, dropout_rate=0.1, positionwise_conv_kernel_size=1)[source]

Define positionwise layer.

espnet.nets.pytorch_backend.transformer.multi_layer_conv

Layer modules for FFT block in FastSpeech (Feed-forward Transformer).

class espnet.nets.pytorch_backend.transformer.multi_layer_conv.Conv1dLinear(in_chans, hidden_chans, kernel_size, dropout_rate)[source]

Bases: torch.nn.modules.module.Module

Conv1D + Linear for Transformer block.

A variant of MultiLayeredConv1d, which replaces second conv-layer to linear.

Initialize Conv1dLinear module.

Parameters:
  • in_chans (int) – Number of input channels.

  • hidden_chans (int) – Number of hidden channels.

  • kernel_size (int) – Kernel size of conv1d.

  • dropout_rate (float) – Dropout rate.

forward(x)[source]

Calculate forward propagation.

Parameters:

x (torch.Tensor) – Batch of input tensors (B, T, in_chans).

Returns:

Batch of output tensors (B, T, hidden_chans).

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.multi_layer_conv.MultiLayeredConv1d(in_chans, hidden_chans, kernel_size, dropout_rate)[source]

Bases: torch.nn.modules.module.Module

Multi-layered conv1d for Transformer block.

This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network in Transforner block, which is introduced in FastSpeech: Fast, Robust and Controllable Text to Speech.

Initialize MultiLayeredConv1d module.

Parameters:
  • in_chans (int) – Number of input channels.

  • hidden_chans (int) – Number of hidden channels.

  • kernel_size (int) – Kernel size of conv1d.

  • dropout_rate (float) – Dropout rate.

forward(x)[source]

Calculate forward propagation.

Parameters:

x (torch.Tensor) – Batch of input tensors (B, T, in_chans).

Returns:

Batch of output tensors (B, T, hidden_chans).

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.encoder_mix

Encoder Mix definition.

class espnet.nets.pytorch_backend.transformer.encoder_mix.EncoderMix(idim, attention_dim=256, attention_heads=4, linear_units=2048, num_blocks_sd=4, num_blocks_rec=8, dropout_rate=0.1, positional_dropout_rate=0.1, attention_dropout_rate=0.0, input_layer='conv2d', pos_enc_class=<class 'espnet.nets.pytorch_backend.transformer.embedding.PositionalEncoding'>, normalize_before=True, concat_after=False, positionwise_layer_type='linear', positionwise_conv_kernel_size=1, padding_idx=-1, num_spkrs=2)[source]

Bases: espnet.nets.pytorch_backend.transformer.encoder.Encoder, torch.nn.modules.module.Module

Transformer encoder module.

Parameters:
  • idim (int) – input dim

  • attention_dim (int) – dimension of attention

  • attention_heads (int) – the number of heads of multi head attention

  • linear_units (int) – the number of units of position-wise feed forward

  • num_blocks (int) – the number of decoder blocks

  • dropout_rate (float) – dropout rate

  • attention_dropout_rate (float) – dropout rate in attention

  • positional_dropout_rate (float) – dropout rate after adding positional encoding

  • or torch.nn.Module input_layer (str) – input layer type

  • pos_enc_class (class) – PositionalEncoding or ScaledPositionalEncoding

  • normalize_before (bool) – whether to use layer_norm before the first block

  • concat_after (bool) – whether to concat attention layer’s input and output if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

  • positionwise_layer_type (str) – linear of conv1d

  • positionwise_conv_kernel_size (int) – kernel size of positionwise conv1d layer

  • padding_idx (int) – padding_idx for input_layer=embed

Construct an Encoder object.

forward(xs, masks)[source]

Encode input sequence.

Parameters:
  • xs (torch.Tensor) – input tensor

  • masks (torch.Tensor) – input mask

Returns:

position embedded tensor and mask

Rtype Tuple[torch.Tensor, torch.Tensor]:

forward_one_step(xs, masks, cache=None)[source]

Encode input frame.

Parameters:
  • xs (torch.Tensor) – input tensor

  • masks (torch.Tensor) – input mask

  • cache (List[torch.Tensor]) – cache tensors

Returns:

position embedded tensor, mask and new cache

Rtype Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:

espnet.nets.pytorch_backend.transformer.subsampling_without_posenc

Subsampling layer definition.

class espnet.nets.pytorch_backend.transformer.subsampling_without_posenc.Conv2dSubsamplingWOPosEnc(idim, odim, dropout_rate, kernels, strides)[source]

Bases: torch.nn.modules.module.Module

Convolutional 2D subsampling.

Parameters:
  • idim (int) – Input dimension.

  • odim (int) – Output dimension.

  • dropout_rate (float) – Dropout rate.

  • kernels (list) – kernel sizes

  • strides (list) – stride sizes

Construct an Conv2dSubsamplingWOPosEnc object.

forward(x, x_mask)[source]

Subsample x.

Parameters:
  • x (torch.Tensor) – Input tensor (#batch, time, idim).

  • x_mask (torch.Tensor) – Input mask (#batch, 1, time).

Returns:

Subsampled tensor (#batch, time’, odim),

where time’ = time // 4.

torch.Tensor: Subsampled mask (#batch, 1, time’),

where time’ = time // 4.

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.layer_norm

Layer normalization module.

class espnet.nets.pytorch_backend.transformer.layer_norm.LayerNorm(nout, dim=-1)[source]

Bases: torch.nn.modules.normalization.LayerNorm

Layer normalization module.

Parameters:
  • nout (int) – Output dim size.

  • dim (int) – Dimension to be normalized.

Construct an LayerNorm object.

forward(x)[source]

Apply layer normalization.

Parameters:

x (torch.Tensor) – Input tensor.

Returns:

Normalized tensor.

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.decoder_layer

Decoder self-attention layer definition.

class espnet.nets.pytorch_backend.transformer.decoder_layer.DecoderLayer(size, self_attn, src_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False)[source]

Bases: torch.nn.modules.module.Module

Single decoder layer module.

Parameters:
  • size (int) – Input dimension.

  • self_attn (torch.nn.Module) – Self-attention module instance. MultiHeadedAttention instance can be used as the argument.

  • src_attn (torch.nn.Module) – Self-attention module instance. MultiHeadedAttention instance can be used as the argument.

  • feed_forward (torch.nn.Module) – Feed-forward module instance. PositionwiseFeedForward, MultiLayeredConv1d, or Conv1dLinear instance can be used as the argument.

  • dropout_rate (float) – Dropout rate.

  • normalize_before (bool) – Whether to use layer_norm before the first block.

  • concat_after (bool) – Whether to concat attention layer’s input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

Construct an DecoderLayer object.

forward(tgt, tgt_mask, memory, memory_mask, cache=None)[source]

Compute decoded features.

Parameters:
  • tgt (torch.Tensor) – Input tensor (#batch, maxlen_out, size).

  • tgt_mask (torch.Tensor) – Mask for input tensor (#batch, maxlen_out).

  • memory (torch.Tensor) – Encoded memory, float32 (#batch, maxlen_in, size).

  • memory_mask (torch.Tensor) – Encoded memory mask (#batch, maxlen_in).

  • cache (List[torch.Tensor]) – List of cached tensors. Each tensor shape should be (#batch, maxlen_out - 1, size).

Returns:

Output tensor(#batch, maxlen_out, size). torch.Tensor: Mask for output tensor (#batch, maxlen_out). torch.Tensor: Encoded memory (#batch, maxlen_in, size). torch.Tensor: Encoded memory mask (#batch, maxlen_in).

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.dynamic_conv2d

Dynamic 2-Dimensional Convolution module.

class espnet.nets.pytorch_backend.transformer.dynamic_conv2d.DynamicConvolution2D(wshare, n_feat, dropout_rate, kernel_size, use_kernel_mask=False, use_bias=False)[source]

Bases: torch.nn.modules.module.Module

Dynamic 2-Dimensional Convolution layer.

This implementation is based on https://github.com/pytorch/fairseq/tree/master/fairseq

Parameters:
  • wshare (int) – the number of kernel of convolution

  • n_feat (int) – the number of features

  • dropout_rate (float) – dropout_rate

  • kernel_size (int) – kernel size (length)

  • use_kernel_mask (bool) – Use causal mask or not for convolution kernel

  • use_bias (bool) – Use bias term or not.

Construct Dynamic 2-Dimensional Convolution layer.

forward(query, key, value, mask)[source]

Forward of ‘Dynamic 2-Dimensional Convolution’.

This function takes query, key and value but uses only query. This is just for compatibility with self-attention layer (attention.py)

Parameters:
  • query (torch.Tensor) – (batch, time1, d_model) input tensor

  • key (torch.Tensor) – (batch, time2, d_model) NOT USED

  • value (torch.Tensor) – (batch, time2, d_model) NOT USED

  • mask (torch.Tensor) – (batch, time1, time2) mask

Returns:

(batch, time1, d_model) output

Return type:

x (torch.Tensor)

espnet.nets.pytorch_backend.transformer.embedding

Positional Encoding Module.

class espnet.nets.pytorch_backend.transformer.embedding.LearnableFourierPosEnc(d_model, dropout_rate=0.0, max_len=5000, gamma=1.0, apply_scaling=False, hidden_dim=None)[source]

Bases: torch.nn.modules.module.Module

Learnable Fourier Features for Positional Encoding.

See https://arxiv.org/pdf/2106.02795.pdf

Parameters:
  • d_model (int) – Embedding dimension.

  • dropout_rate (float) – Dropout rate.

  • max_len (int) – Maximum input length.

  • gamma (float) – init parameter for the positional kernel variance see https://arxiv.org/pdf/2106.02795.pdf.

  • apply_scaling (bool) – Whether to scale the input before adding the pos encoding.

  • hidden_dim (int) – if not None, we modulate the pos encodings with an MLP whose hidden layer has hidden_dim neurons.

Initialize class.

extend_pe(x)[source]

Reset the positional encodings.

forward(x: torch.Tensor)[source]

Add positional encoding.

Parameters:

x (torch.Tensor) – Input tensor (batch, time, *).

Returns:

Encoded tensor (batch, time, *).

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.embedding.LegacyRelPositionalEncoding(d_model, dropout_rate, max_len=5000)[source]

Bases: espnet.nets.pytorch_backend.transformer.embedding.PositionalEncoding

Relative positional encoding module (old version).

Details can be found in https://github.com/espnet/espnet/pull/2816.

See : Appendix B in https://arxiv.org/abs/1901.02860

Parameters:
  • d_model (int) – Embedding dimension.

  • dropout_rate (float) – Dropout rate.

  • max_len (int) – Maximum input length.

Initialize class.

forward(x)[source]

Compute positional encoding.

Parameters:

x (torch.Tensor) – Input tensor (batch, time, *).

Returns:

Encoded tensor (batch, time, *). torch.Tensor: Positional embedding tensor (1, time, *).

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.embedding.PositionalEncoding(d_model, dropout_rate, max_len=5000, reverse=False)[source]

Bases: torch.nn.modules.module.Module

Positional encoding.

Parameters:
  • d_model (int) – Embedding dimension.

  • dropout_rate (float) – Dropout rate.

  • max_len (int) – Maximum input length.

  • reverse (bool) – Whether to reverse the input position. Only for

  • class LegacyRelPositionalEncoding. We remove it in the current (the) –

  • RelPositionalEncoding. (class) –

Construct an PositionalEncoding object.

extend_pe(x)[source]

Reset the positional encodings.

forward(x: torch.Tensor)[source]

Add positional encoding.

Parameters:

x (torch.Tensor) – Input tensor (batch, time, *).

Returns:

Encoded tensor (batch, time, *).

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.embedding.RelPositionalEncoding(d_model, dropout_rate, max_len=5000)[source]

Bases: torch.nn.modules.module.Module

Relative positional encoding module (new implementation).

Details can be found in https://github.com/espnet/espnet/pull/2816.

See : Appendix B in https://arxiv.org/abs/1901.02860

Parameters:
  • d_model (int) – Embedding dimension.

  • dropout_rate (float) – Dropout rate.

  • max_len (int) – Maximum input length.

Construct an PositionalEncoding object.

extend_pe(x)[source]

Reset the positional encodings.

forward(x: torch.Tensor)[source]

Add positional encoding.

Parameters:

x (torch.Tensor) – Input tensor (batch, time, *).

Returns:

Encoded tensor (batch, time, *).

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.embedding.ScaledPositionalEncoding(d_model, dropout_rate, max_len=5000)[source]

Bases: espnet.nets.pytorch_backend.transformer.embedding.PositionalEncoding

Scaled positional encoding module.

See Sec. 3.2 https://arxiv.org/abs/1809.08895

Parameters:
  • d_model (int) – Embedding dimension.

  • dropout_rate (float) – Dropout rate.

  • max_len (int) – Maximum input length.

Initialize class.

forward(x)[source]

Add positional encoding.

Parameters:

x (torch.Tensor) – Input tensor (batch, time, *).

Returns:

Encoded tensor (batch, time, *).

Return type:

torch.Tensor

reset_parameters()[source]

Reset parameters.

class espnet.nets.pytorch_backend.transformer.embedding.StreamPositionalEncoding(d_model, dropout_rate, max_len=5000)[source]

Bases: torch.nn.modules.module.Module

Streaming Positional encoding.

Parameters:
  • d_model (int) – Embedding dimension.

  • dropout_rate (float) – Dropout rate.

  • max_len (int) – Maximum input length.

Construct an PositionalEncoding object.

extend_pe(length, device, dtype)[source]

Reset the positional encodings.

forward(x: torch.Tensor, start_idx: int = 0)[source]

Add positional encoding.

Parameters:

x (torch.Tensor) – Input tensor (batch, time, *).

Returns:

Encoded tensor (batch, time, *).

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.positionwise_feed_forward

Positionwise feed forward layer definition.

class espnet.nets.pytorch_backend.transformer.positionwise_feed_forward.PositionwiseFeedForward(idim, hidden_units, dropout_rate, activation=ReLU())[source]

Bases: torch.nn.modules.module.Module

Positionwise feed forward layer.

Parameters:
  • idim (int) – Input dimenstion.

  • hidden_units (int) – The number of hidden units.

  • dropout_rate (float) – Dropout rate.

Construct an PositionwiseFeedForward object.

forward(x)[source]

Forward function.

espnet.nets.pytorch_backend.transformer.label_smoothing_loss

Label smoothing module.

class espnet.nets.pytorch_backend.transformer.label_smoothing_loss.LabelSmoothingLoss(size, padding_idx, smoothing, normalize_length=False, criterion=KLDivLoss())[source]

Bases: torch.nn.modules.module.Module

Label-smoothing loss.

Parameters:
  • size (int) – the number of class

  • padding_idx (int) – ignored class id

  • smoothing (float) – smoothing rate (0.0 means the conventional CE)

  • normalize_length (bool) – normalize loss by sequence length if True

  • criterion (torch.nn.Module) – loss function to be smoothed

Construct an LabelSmoothingLoss object.

forward(x, target)[source]

Compute loss between x and target.

Parameters:
  • x (torch.Tensor) – prediction (batch, seqlen, class)

  • target (torch.Tensor) – target signal masked with self.padding_id (batch, seqlen)

Returns:

scalar float value

:rtype torch.Tensor

espnet.nets.pytorch_backend.transformer.add_sos_eos

Unility functions for Transformer.

espnet.nets.pytorch_backend.transformer.add_sos_eos.add_sos_eos(ys_pad, sos, eos, ignore_id)[source]

Add <sos> and <eos> labels.

Parameters:
  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

  • sos (int) – index of <sos>

  • eos (int) – index of <eos>

  • ignore_id (int) – index of padding

Returns:

padded tensor (B, Lmax)

Return type:

torch.Tensor

Returns:

padded tensor (B, Lmax)

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.attention

Multi-Head Attention layer definition.

class espnet.nets.pytorch_backend.transformer.attention.LegacyRelPositionMultiHeadedAttention(n_head, n_feat, dropout_rate, zero_triu=False)[source]

Bases: espnet.nets.pytorch_backend.transformer.attention.MultiHeadedAttention

Multi-Head Attention layer with relative position encoding (old version).

Details can be found in https://github.com/espnet/espnet/pull/2816.

Paper: https://arxiv.org/abs/1901.02860

Parameters:
  • n_head (int) – The number of heads.

  • n_feat (int) – The number of features.

  • dropout_rate (float) – Dropout rate.

  • zero_triu (bool) – Whether to zero the upper triangular part of attention matrix.

Construct an RelPositionMultiHeadedAttention object.

forward(query, key, value, pos_emb, mask)[source]

Compute ‘Scaled Dot Product Attention’ with rel. positional encoding.

Parameters:
  • query (torch.Tensor) – Query tensor (#batch, time1, size).

  • key (torch.Tensor) – Key tensor (#batch, time2, size).

  • value (torch.Tensor) – Value tensor (#batch, time2, size).

  • pos_emb (torch.Tensor) – Positional embedding tensor (#batch, time1, size).

  • mask (torch.Tensor) – Mask tensor (#batch, 1, time2) or (#batch, time1, time2).

Returns:

Output tensor (#batch, time1, d_model).

Return type:

torch.Tensor

rel_shift(x)[source]

Compute relative positional encoding.

Parameters:

x (torch.Tensor) – Input tensor (batch, head, time1, time2).

Returns:

Output tensor.

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.attention.MultiHeadedAttention(n_head, n_feat, dropout_rate)[source]

Bases: torch.nn.modules.module.Module

Multi-Head Attention layer.

Parameters:
  • n_head (int) – The number of heads.

  • n_feat (int) – The number of features.

  • dropout_rate (float) – Dropout rate.

Construct an MultiHeadedAttention object.

forward(query, key, value, mask)[source]

Compute scaled dot product attention.

Parameters:
  • query (torch.Tensor) – Query tensor (#batch, time1, size).

  • key (torch.Tensor) – Key tensor (#batch, time2, size).

  • value (torch.Tensor) – Value tensor (#batch, time2, size).

  • mask (torch.Tensor) – Mask tensor (#batch, 1, time2) or (#batch, time1, time2).

Returns:

Output tensor (#batch, time1, d_model).

Return type:

torch.Tensor

forward_attention(value, scores, mask)[source]

Compute attention context vector.

Parameters:
  • value (torch.Tensor) – Transformed value (#batch, n_head, time2, d_k).

  • scores (torch.Tensor) – Attention score (#batch, n_head, time1, time2).

  • mask (torch.Tensor) – Mask (#batch, 1, time2) or (#batch, time1, time2).

Returns:

Transformed value (#batch, time1, d_model)

weighted by the attention score (#batch, time1, time2).

Return type:

torch.Tensor

forward_qkv(query, key, value)[source]

Transform query, key and value.

Parameters:
  • query (torch.Tensor) – Query tensor (#batch, time1, size).

  • key (torch.Tensor) – Key tensor (#batch, time2, size).

  • value (torch.Tensor) – Value tensor (#batch, time2, size).

Returns:

Transformed query tensor (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k).

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.attention.RelPositionMultiHeadedAttention(n_head, n_feat, dropout_rate, zero_triu=False)[source]

Bases: espnet.nets.pytorch_backend.transformer.attention.MultiHeadedAttention

Multi-Head Attention layer with relative position encoding (new implementation).

Details can be found in https://github.com/espnet/espnet/pull/2816.

Paper: https://arxiv.org/abs/1901.02860

Parameters:
  • n_head (int) – The number of heads.

  • n_feat (int) – The number of features.

  • dropout_rate (float) – Dropout rate.

  • zero_triu (bool) – Whether to zero the upper triangular part of attention matrix.

Construct an RelPositionMultiHeadedAttention object.

forward(query, key, value, pos_emb, mask)[source]

Compute ‘Scaled Dot Product Attention’ with rel. positional encoding.

Parameters:
  • query (torch.Tensor) – Query tensor (#batch, time1, size).

  • key (torch.Tensor) – Key tensor (#batch, time2, size).

  • value (torch.Tensor) – Value tensor (#batch, time2, size).

  • pos_emb (torch.Tensor) – Positional embedding tensor (#batch, 2*time1-1, size).

  • mask (torch.Tensor) – Mask tensor (#batch, 1, time2) or (#batch, time1, time2).

Returns:

Output tensor (#batch, time1, d_model).

Return type:

torch.Tensor

rel_shift(x)[source]

Compute relative positional encoding.

Parameters:
  • x (torch.Tensor) – Input tensor (batch, head, time1, 2*time1-1).

  • means the length of query vector. (time1) –

Returns:

Output tensor.

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.optimizer

Optimizer module.

class espnet.nets.pytorch_backend.transformer.optimizer.NoamOpt(model_size, factor, warmup, optimizer)[source]

Bases: object

Optim wrapper that implements rate.

Construct an NoamOpt object.

load_state_dict(state_dict)[source]

Load state_dict.

property param_groups

Return param_groups.

rate(step=None)[source]

Implement lrate above.

state_dict()[source]

Return state_dict.

step()[source]

Update parameters and rate.

zero_grad()[source]

Reset gradient.

espnet.nets.pytorch_backend.transformer.optimizer.get_std_opt(model_params, d_model, warmup, factor)[source]

Get standard NoamOpt.

espnet.nets.pytorch_backend.transformer.plot

class espnet.nets.pytorch_backend.transformer.plot.PlotAttentionReport(att_vis_fn, data, outdir, converter, transform, device, reverse=False, ikey='input', iaxis=0, okey='output', oaxis=0, subsampling_factor=1)[source]

Bases: espnet.asr.asr_utils.PlotAttentionReport

get_attention_weights()[source]

Return attention weights.

Returns:

attention weights. float. Its shape would be

differ from backend. * pytorch-> 1) multi-head case => (B, H, Lmax, Tmax), 2)

other case => (B, Lmax, Tmax).

  • chainer-> (B, Lmax, Tmax)

Return type:

numpy.ndarray

log_attentions(logger, step)[source]

Add image files of att_ws matrix to the tensorboard.

plotfn(*args, **kwargs)[source]
espnet.nets.pytorch_backend.transformer.plot.plot_multi_head_attention(data, uttid_list, attn_dict, outdir, suffix='png', savefn=<function savefig>, ikey='input', iaxis=0, okey='output', oaxis=0, subsampling_factor=4)[source]

Plot multi head attentions.

Parameters:
  • data (dict) – utts info from json file

  • uttid_list (List) – utterance IDs

  • torch.Tensor] attn_dict (dict[str,) – multi head attention dict. values should be torch.Tensor (head, input_length, output_length)

  • outdir (str) – dir to save fig

  • suffix (str) – filename suffix including image type (e.g., png)

  • savefn – function to save

  • ikey (str) – key to access input

  • iaxis (int) – dimension to access input

  • okey (str) – key to access output

  • oaxis (int) – dimension to access output

  • subsampling_factor – subsampling factor in encoder

espnet.nets.pytorch_backend.transformer.plot.savefig(plot, filename)[source]

espnet.nets.pytorch_backend.transformer.initializer

Parameter initialization.

espnet.nets.pytorch_backend.transformer.initializer.initialize(model, init_type='pytorch')[source]

Initialize Transformer module.

Parameters:
  • model (torch.nn.Module) – transformer instance

  • init_type (str) – initialization type

espnet.nets.pytorch_backend.transformer.decoder

Decoder definition.

class espnet.nets.pytorch_backend.transformer.decoder.Decoder(odim, selfattention_layer_type='selfattn', attention_dim=256, attention_heads=4, conv_wshare=4, conv_kernel_length=11, conv_usebias=False, linear_units=2048, num_blocks=6, dropout_rate=0.1, positional_dropout_rate=0.1, self_attention_dropout_rate=0.0, src_attention_dropout_rate=0.0, input_layer='embed', use_output_layer=True, pos_enc_class=<class 'espnet.nets.pytorch_backend.transformer.embedding.PositionalEncoding'>, normalize_before=True, concat_after=False)[source]

Bases: espnet.nets.scorer_interface.BatchScorerInterface, torch.nn.modules.module.Module

Transfomer decoder module.

Parameters:
  • odim (int) – Output diminsion.

  • self_attention_layer_type (str) – Self-attention layer type.

  • attention_dim (int) – Dimension of attention.

  • attention_heads (int) – The number of heads of multi head attention.

  • conv_wshare (int) – The number of kernel of convolution. Only used in self_attention_layer_type == “lightconv*” or “dynamiconv*”.

  • conv_kernel_length (Union[int, str]) – Kernel size str of convolution (e.g. 71_71_71_71_71_71). Only used in self_attention_layer_type == “lightconv*” or “dynamiconv*”.

  • conv_usebias (bool) – Whether to use bias in convolution. Only used in self_attention_layer_type == “lightconv*” or “dynamiconv*”.

  • linear_units (int) – The number of units of position-wise feed forward.

  • num_blocks (int) – The number of decoder blocks.

  • dropout_rate (float) – Dropout rate.

  • positional_dropout_rate (float) – Dropout rate after adding positional encoding.

  • self_attention_dropout_rate (float) – Dropout rate in self-attention.

  • src_attention_dropout_rate (float) – Dropout rate in source-attention.

  • input_layer (Union[str, torch.nn.Module]) – Input layer type.

  • use_output_layer (bool) – Whether to use output layer.

  • pos_enc_class (torch.nn.Module) – Positional encoding module class. PositionalEncoding `or `ScaledPositionalEncoding

  • normalize_before (bool) – Whether to use layer_norm before the first block.

  • concat_after (bool) – Whether to concat attention layer’s input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

Construct an Decoder object.

batch_score(ys: torch.Tensor, states: List[Any], xs: torch.Tensor) → Tuple[torch.Tensor, List[Any]][source]

Score new token batch (required).

Parameters:
  • ys (torch.Tensor) – torch.int64 prefix tokens (n_batch, ylen).

  • states (List[Any]) – Scorer states for prefix tokens.

  • xs (torch.Tensor) – The encoder feature that generates ys (n_batch, xlen, n_feat).

Returns:

Tuple of

batchfied scores for next token with shape of (n_batch, n_vocab) and next state list for ys.

Return type:

tuple[torch.Tensor, List[Any]]

forward(tgt, tgt_mask, memory, memory_mask)[source]

Forward decoder.

Parameters:
  • tgt (torch.Tensor) – Input token ids, int64 (#batch, maxlen_out) if input_layer == “embed”. In the other case, input tensor (#batch, maxlen_out, odim).

  • tgt_mask (torch.Tensor) – Input token mask (#batch, maxlen_out). dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+ (include 1.2).

  • memory (torch.Tensor) – Encoded memory, float32 (#batch, maxlen_in, feat).

  • memory_mask (torch.Tensor) – Encoded memory mask (#batch, maxlen_in). dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+ (include 1.2).

Returns:

Decoded token score before softmax (#batch, maxlen_out, odim)

if use_output_layer is True. In the other case,final block outputs (#batch, maxlen_out, attention_dim).

torch.Tensor: Score mask before softmax (#batch, maxlen_out).

Return type:

torch.Tensor

forward_one_step(tgt, tgt_mask, memory, cache=None)[source]

Forward one step.

Parameters:
  • tgt (torch.Tensor) – Input token ids, int64 (#batch, maxlen_out).

  • tgt_mask (torch.Tensor) – Input token mask (#batch, maxlen_out). dtype=torch.uint8 in PyTorch 1.2- and dtype=torch.bool in PyTorch 1.2+ (include 1.2).

  • memory (torch.Tensor) – Encoded memory, float32 (#batch, maxlen_in, feat).

  • cache (List[torch.Tensor]) – List of cached tensors. Each tensor shape should be (#batch, maxlen_out - 1, size).

Returns:

Output tensor (batch, maxlen_out, odim). List[torch.Tensor]: List of cache tensors of each decoder layer.

Return type:

torch.Tensor

score(ys, state, x)[source]

Score.

espnet.nets.pytorch_backend.transformer.__init__

Initialize sub package.

espnet.nets.pytorch_backend.transformer.contextual_block_encoder_layer

Encoder self-attention layer definition.

class espnet.nets.pytorch_backend.transformer.contextual_block_encoder_layer.ContextualBlockEncoderLayer(size, self_attn, feed_forward, dropout_rate, total_layer_num, normalize_before=True, concat_after=False)[source]

Bases: torch.nn.modules.module.Module

Contexutal Block Encoder layer module.

Parameters:
  • size (int) – Input dimension.

  • self_attn (torch.nn.Module) – Self-attention module instance. MultiHeadedAttention or RelPositionMultiHeadedAttention instance can be used as the argument.

  • feed_forward (torch.nn.Module) – Feed-forward module instance. PositionwiseFeedForward, MultiLayeredConv1d, or Conv1dLinear instance can be used as the argument.

  • dropout_rate (float) – Dropout rate.

  • total_layer_num (int) – Total number of layers

  • normalize_before (bool) – Whether to use layer_norm before the first block.

  • concat_after (bool) – Whether to concat attention layer’s input and output. if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x))) if False, no additional linear will be applied. i.e. x -> x + att(x)

Construct an EncoderLayer object.

forward(x, mask, infer_mode=False, past_ctx=None, next_ctx=None, is_short_segment=False, layer_idx=0, cache=None)[source]

Calculate forward propagation.

forward_infer(x, mask, past_ctx=None, next_ctx=None, is_short_segment=False, layer_idx=0, cache=None)[source]

Compute encoded features.

Parameters:
  • x_input (torch.Tensor) – Input tensor (#batch, time, size).

  • mask (torch.Tensor) – Mask tensor for the input (#batch, 1, time).

  • past_ctx (torch.Tensor) – Previous contexutal vector

  • next_ctx (torch.Tensor) – Next contexutal vector

  • cache (torch.Tensor) – Cache tensor of the input (#batch, time - 1, size).

Returns:

Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, 1, time). cur_ctx (torch.Tensor): Current contexutal vector next_ctx (torch.Tensor): Next contexutal vector layer_idx (int): layer index number

Return type:

torch.Tensor

forward_train(x, mask, past_ctx=None, next_ctx=None, layer_idx=0, cache=None)[source]

Compute encoded features.

Parameters:
  • x_input (torch.Tensor) – Input tensor (#batch, time, size).

  • mask (torch.Tensor) – Mask tensor for the input (#batch, 1, time).

  • past_ctx (torch.Tensor) – Previous contexutal vector

  • next_ctx (torch.Tensor) – Next contexutal vector

  • cache (torch.Tensor) – Cache tensor of the input (#batch, time - 1, size).

Returns:

Output tensor (#batch, time, size). torch.Tensor: Mask tensor (#batch, 1, time). cur_ctx (torch.Tensor): Current contexutal vector next_ctx (torch.Tensor): Next contexutal vector layer_idx (int): layer index number

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.repeat

Repeat the same layer definition.

class espnet.nets.pytorch_backend.transformer.repeat.MultiSequential(*args, layer_drop_rate=0.0)[source]

Bases: torch.nn.modules.container.Sequential

Multi-input multi-output torch.nn.Sequential.

Initialize MultiSequential with layer_drop.

Parameters:

layer_drop_rate (float) – Probability of dropping out each fn (layer).

forward(*args)[source]

Repeat.

espnet.nets.pytorch_backend.transformer.repeat.repeat(N, fn, layer_drop_rate=0.0)[source]

Repeat module N times.

Parameters:
  • N (int) – Number of repeat time.

  • fn (Callable) – Function to generate module.

  • layer_drop_rate (float) – Probability of dropping out each fn (layer).

Returns:

Repeated model instance.

Return type:

MultiSequential

espnet.nets.pytorch_backend.transformer.lightconv

Lightweight Convolution Module.

class espnet.nets.pytorch_backend.transformer.lightconv.LightweightConvolution(wshare, n_feat, dropout_rate, kernel_size, use_kernel_mask=False, use_bias=False)[source]

Bases: torch.nn.modules.module.Module

Lightweight Convolution layer.

This implementation is based on https://github.com/pytorch/fairseq/tree/master/fairseq

Parameters:
  • wshare (int) – the number of kernel of convolution

  • n_feat (int) – the number of features

  • dropout_rate (float) – dropout_rate

  • kernel_size (int) – kernel size (length)

  • use_kernel_mask (bool) – Use causal mask or not for convolution kernel

  • use_bias (bool) – Use bias term or not.

Construct Lightweight Convolution layer.

forward(query, key, value, mask)[source]

Forward of ‘Lightweight Convolution’.

This function takes query, key and value but uses only query. This is just for compatibility with self-attention layer (attention.py)

Parameters:
  • query (torch.Tensor) – (batch, time1, d_model) input tensor

  • key (torch.Tensor) – (batch, time2, d_model) NOT USED

  • value (torch.Tensor) – (batch, time2, d_model) NOT USED

  • mask (torch.Tensor) – (batch, time1, time2) mask

Returns:

(batch, time1, d_model) output

Return type:

x (torch.Tensor)

espnet.nets.pytorch_backend.transformer.argument

Transformer common arguments.

espnet.nets.pytorch_backend.transformer.argument.add_arguments_transformer_common(group)[source]

Add Transformer common arguments.

espnet.nets.pytorch_backend.transformer.subsampling

Subsampling layer definition.

class espnet.nets.pytorch_backend.transformer.subsampling.Conv1dSubsampling2(idim, odim, dropout_rate, pos_enc=None)[source]

Bases: torch.nn.modules.module.Module

Convolutional 1D subsampling (to 1/2 length).

Parameters:
  • idim (int) – Input dimension.

  • odim (int) – Output dimension.

  • dropout_rate (float) – Dropout rate.

  • pos_enc (torch.nn.Module) – Custom position encoding layer.

Construct an Conv1dSubsampling2 object.

forward(x, x_mask)[source]

Subsample x.

Parameters:
  • x (torch.Tensor) – Input tensor (#batch, time, idim).

  • x_mask (torch.Tensor) – Input mask (#batch, 1, time).

Returns:

Subsampled tensor (#batch, time’, odim),

where time’ = time // 2.

torch.Tensor: Subsampled mask (#batch, 1, time’),

where time’ = time // 2.

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.subsampling.Conv1dSubsampling3(idim, odim, dropout_rate, pos_enc=None)[source]

Bases: torch.nn.modules.module.Module

Convolutional 1D subsampling (to 1/3 length).

Parameters:
  • idim (int) – Input dimension.

  • odim (int) – Output dimension.

  • dropout_rate (float) – Dropout rate.

  • pos_enc (torch.nn.Module) – Custom position encoding layer.

Construct an Conv1dSubsampling3 object.

forward(x, x_mask)[source]

Subsample x.

Parameters:
  • x (torch.Tensor) – Input tensor (#batch, time, idim).

  • x_mask (torch.Tensor) – Input mask (#batch, 1, time).

Returns:

Subsampled tensor (#batch, time’, odim),

where time’ = time // 2.

torch.Tensor: Subsampled mask (#batch, 1, time’),

where time’ = time // 2.

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.subsampling.Conv2dSubsampling(idim, odim, dropout_rate, pos_enc=None)[source]

Bases: torch.nn.modules.module.Module

Convolutional 2D subsampling (to 1/4 length).

Parameters:
  • idim (int) – Input dimension.

  • odim (int) – Output dimension.

  • dropout_rate (float) – Dropout rate.

  • pos_enc (torch.nn.Module) – Custom position encoding layer.

Construct an Conv2dSubsampling object.

forward(x, x_mask)[source]

Subsample x.

Parameters:
  • x (torch.Tensor) – Input tensor (#batch, time, idim).

  • x_mask (torch.Tensor) – Input mask (#batch, 1, time).

Returns:

Subsampled tensor (#batch, time’, odim),

where time’ = time // 4.

torch.Tensor: Subsampled mask (#batch, 1, time’),

where time’ = time // 4.

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.subsampling.Conv2dSubsampling1(idim, odim, dropout_rate, pos_enc=None)[source]

Bases: torch.nn.modules.module.Module

Similar to Conv2dSubsampling module, but without any subsampling performed.

Parameters:
  • idim (int) – Input dimension.

  • odim (int) – Output dimension.

  • dropout_rate (float) – Dropout rate.

  • pos_enc (torch.nn.Module) – Custom position encoding layer.

Construct an Conv2dSubsampling1 object.

forward(x, x_mask)[source]

Pass x through 2 Conv2d layers without subsampling.

Parameters:
  • x (torch.Tensor) – Input tensor (#batch, time, idim).

  • x_mask (torch.Tensor) – Input mask (#batch, 1, time).

Returns:

Subsampled tensor (#batch, time’, odim).

where time’ = time - 4.

torch.Tensor: Subsampled mask (#batch, 1, time’).

where time’ = time - 4.

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.subsampling.Conv2dSubsampling2(idim, odim, dropout_rate, pos_enc=None)[source]

Bases: torch.nn.modules.module.Module

Convolutional 2D subsampling (to 1/2 length).

Parameters:
  • idim (int) – Input dimension.

  • odim (int) – Output dimension.

  • dropout_rate (float) – Dropout rate.

  • pos_enc (torch.nn.Module) – Custom position encoding layer.

Construct an Conv2dSubsampling2 object.

forward(x, x_mask)[source]

Subsample x.

Parameters:
  • x (torch.Tensor) – Input tensor (#batch, time, idim).

  • x_mask (torch.Tensor) – Input mask (#batch, 1, time).

Returns:

Subsampled tensor (#batch, time’, odim),

where time’ = time // 2.

torch.Tensor: Subsampled mask (#batch, 1, time’),

where time’ = time // 2.

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.subsampling.Conv2dSubsampling6(idim, odim, dropout_rate, pos_enc=None)[source]

Bases: torch.nn.modules.module.Module

Convolutional 2D subsampling (to 1/6 length).

Parameters:
  • idim (int) – Input dimension.

  • odim (int) – Output dimension.

  • dropout_rate (float) – Dropout rate.

  • pos_enc (torch.nn.Module) – Custom position encoding layer.

Construct an Conv2dSubsampling6 object.

forward(x, x_mask)[source]

Subsample x.

Parameters:
  • x (torch.Tensor) – Input tensor (#batch, time, idim).

  • x_mask (torch.Tensor) – Input mask (#batch, 1, time).

Returns:

Subsampled tensor (#batch, time’, odim),

where time’ = time // 6.

torch.Tensor: Subsampled mask (#batch, 1, time’),

where time’ = time // 6.

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.transformer.subsampling.Conv2dSubsampling8(idim, odim, dropout_rate, pos_enc=None)[source]

Bases: torch.nn.modules.module.Module

Convolutional 2D subsampling (to 1/8 length).

Parameters:
  • idim (int) – Input dimension.

  • odim (int) – Output dimension.

  • dropout_rate (float) – Dropout rate.

  • pos_enc (torch.nn.Module) – Custom position encoding layer.

Construct an Conv2dSubsampling8 object.

forward(x, x_mask)[source]

Subsample x.

Parameters:
  • x (torch.Tensor) – Input tensor (#batch, time, idim).

  • x_mask (torch.Tensor) – Input mask (#batch, 1, time).

Returns:

Subsampled tensor (#batch, time’, odim),

where time’ = time // 8.

torch.Tensor: Subsampled mask (#batch, 1, time’),

where time’ = time // 8.

Return type:

torch.Tensor

exception espnet.nets.pytorch_backend.transformer.subsampling.TooShortUttError(message, actual_size, limit)[source]

Bases: Exception

Raised when the utt is too short for subsampling.

Parameters:
  • message (str) – Message for error catch

  • actual_size (int) – the short size that cannot pass the subsampling

  • limit (int) – the limit size for subsampling

Construct a TooShortUttError for error handler.

espnet.nets.pytorch_backend.transformer.subsampling.check_short_utt(ins, size)[source]

Check if the utterance is too short for subsampling.

espnet.nets.pytorch_backend.transformer.longformer_attention

Longformer based Local Attention Definition.

class espnet.nets.pytorch_backend.transformer.longformer_attention.LongformerAttention(config: longformer.longformer.LongformerConfig, layer_id: int)[source]

Bases: torch.nn.modules.module.Module

Longformer based Local Attention Definition.

Compute Longformer based Self-Attention.

Parameters:
  • config – Longformer attention configuration

  • layer_id – Integer representing the layer index

forward(query, key, value, mask)[source]

Compute Longformer Self-Attention with masking.

Expects len(hidden_states) to be multiple of attention_window. Padding to attention_window happens in encoder.forward() to avoid redoing the padding on each layer. :param query: Query tensor (#batch, time1, size). :type query: torch.Tensor :param key: Key tensor (#batch, time2, size). :type key: torch.Tensor :param value: Value tensor (#batch, time2, size). :type value: torch.Tensor :param pos_emb: Positional embedding tensor

(#batch, 2*time1-1, size).

Parameters:

mask (torch.Tensor) – Mask tensor (#batch, 1, time2) or (#batch, time1, time2).

Returns:

Output tensor (#batch, time1, d_model).

Return type:

torch.Tensor

espnet.nets.pytorch_backend.transformer.mask

Mask module.

espnet.nets.pytorch_backend.transformer.mask.subsequent_mask(size, device='cpu', dtype=torch.bool)[source]

Create mask for subsequent steps (size, size).

Parameters:
  • size (int) – size of mask

  • device (str) – “cpu” or “cuda” or torch.Tensor.device

  • dtype (torch.dtype) – result dtype

Return type:

torch.Tensor

>>> subsequent_mask(3)
[[1, 0, 0],
 [1, 1, 0],
 [1, 1, 1]]
espnet.nets.pytorch_backend.transformer.mask.target_mask(ys_in_pad, ignore_id)[source]

Create mask for decoder self-attention.

Parameters:
  • ys_pad (torch.Tensor) – batch of padded target sequences (B, Lmax)

  • ignore_id (int) – index of padding

  • dtype (torch.dtype) – result dtype

Return type:

torch.Tensor (B, Lmax, Lmax)

espnet.nets.pytorch_backend.transducer.custom_decoder

Custom decoder definition for Transducer model.

class espnet.nets.pytorch_backend.transducer.custom_decoder.CustomDecoder(odim: int, dec_arch: List, input_layer: str = 'embed', repeat_block: int = 0, joint_activation_type: str = 'tanh', positional_encoding_type: str = 'abs_pos', positionwise_layer_type: str = 'linear', positionwise_activation_type: str = 'relu', input_layer_dropout_rate: float = 0.0, blank_id: int = 0)[source]

Bases: espnet.nets.transducer_decoder_interface.TransducerDecoderInterface, torch.nn.modules.module.Module

Custom decoder module for Transducer model.

Parameters:
  • odim – Output dimension.

  • dec_arch – Decoder block architecture (type and parameters).

  • input_layer – Input layer type.

  • repeat_block – Number of times dec_arch is repeated.

  • joint_activation_type – Type of activation for joint network.

  • positional_encoding_type – Positional encoding type.

  • positionwise_layer_type – Positionwise layer type.

  • positionwise_activation_type – Positionwise activation type.

  • input_layer_dropout_rate – Dropout rate for input layer.

  • blank_id – Blank symbol ID.

Construct a CustomDecoder object.

batch_score(hyps: Union[List[espnet.nets.transducer_decoder_interface.Hypothesis], List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis]], dec_states: List[Optional[torch.Tensor]], cache: Dict[str, Any], use_lm: bool) → Tuple[torch.Tensor, List[Optional[torch.Tensor]], torch.Tensor][source]

One-step forward hypotheses.

Parameters:
  • hyps – Hypotheses.

  • dec_states – Decoder hidden states. [N x (B, U, D_dec)]

  • cache – Pairs of (h_dec, dec_states) for each label sequences. (keys)

  • use_lm – Whether to compute label ID sequences for LM.

Returns:

Decoder output sequences. (B, D_dec) dec_states: Decoder hidden states. [N x (B, U, D_dec)] lm_labels: Label ID sequences for LM. (B,)

Return type:

dec_out

create_batch_states(states: List[Optional[torch.Tensor]], new_states: List[Optional[torch.Tensor]], check_list: List[List[int]]) → List[Optional[torch.Tensor]][source]

Create decoder hidden states sequences.

Parameters:
  • states – Decoder hidden states. [N x (B, U, D_dec)]

  • new_states – Decoder hidden states. [B x [N x (1, U, D_dec)]]

  • check_list – Label ID sequences.

Returns:

New decoder hidden states. [N x (B, U, D_dec)]

Return type:

states

forward(dec_input: torch.Tensor, dec_mask: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]

Encode label ID sequences.

Parameters:
  • dec_input – Label ID sequences. (B, U)

  • dec_mask – Label mask sequences. (B, U)

Returns:

Decoder output sequences. (B, U, D_dec) dec_output_mask: Mask of decoder output sequences. (B, U)

Return type:

dec_output

init_state(batch_size: Optional[int] = None) → List[Optional[torch.Tensor]][source]

Initialize decoder states.

Parameters:

batch_size – Batch size.

Returns:

Initial decoder hidden states. [N x None]

Return type:

state

score(hyp: espnet.nets.transducer_decoder_interface.Hypothesis, cache: Dict[str, Any]) → Tuple[torch.Tensor, List[Optional[torch.Tensor]], torch.Tensor][source]

One-step forward hypothesis.

Parameters:
  • hyp – Hypothesis.

  • cache – Pairs of (dec_out, dec_state) for each label sequence. (key)

Returns:

Decoder output sequence. (1, D_dec) dec_state: Decoder hidden states. [N x (1, U, D_dec)] lm_label: Label ID for LM. (1,)

Return type:

dec_out

select_state(states: List[Optional[torch.Tensor]], idx: int) → List[Optional[torch.Tensor]][source]

Get specified ID state from decoder hidden states.

Parameters:
  • states – Decoder hidden states. [N x (B, U, D_dec)]

  • idx – State ID to extract.

Returns:

Decoder hidden state for given ID. [N x (1, U, D_dec)]

Return type:

state_idx

set_device(device: torch.device)[source]

Set GPU device to use.

Parameters:

device – Device ID.

espnet.nets.pytorch_backend.transducer.rnn_encoder

RNN encoder implementation for Transducer model.

These classes are based on the ones in espnet.nets.pytorch_backend.rnn.encoders, and modified to output intermediate representation based given list of layers as input. To do so, RNN class rely on a stack of 1-layer LSTM instead of a multi-layer LSTM. The additional outputs are intended to be used with Transducer auxiliary tasks.

class espnet.nets.pytorch_backend.transducer.rnn_encoder.Encoder(idim: int, etype: str, elayers: int, eunits: int, eprojs: int, subsample: numpy.ndarray, dropout_rate: float = 0.0, aux_enc_output_layers: List = [])[source]

Bases: torch.nn.modules.module.Module

Encoder module.

Parameters:
  • idim – Input dimension.

  • etype – Encoder units type.

  • elayers – Number of encoder layers.

  • eunits – Number of encoder units per layer.

  • eprojs – Number of projection units per layer.

  • subsample – Subsampling rate per layer.

  • dropout_rate – Dropout rate for encoder layers.

  • intermediate_encoder_layers – Layer IDs for auxiliary encoder output sequences.

Initialize Encoder module.

forward(feats: torch.Tensor, feats_len: torch.Tensor, prev_states: Optional[List[torch.Tensor]] = None)[source]

Forward encoder.

Parameters:
  • feats – Feature sequences. (B, F, D_feats)

  • feats_len – Feature sequences lengths. (B,)

  • prev_states – Previous encoder hidden states. [N x (B, T, D_enc)]

Returns:

Encoder output sequences. (B, T, D_enc)

with or without encoder intermediate output sequences. ((B, T, D_enc), [N x (B, T, D_enc)])

enc_out_len: Encoder output sequences lengths. (B,) current_states: Encoder hidden states. [N x (B, T, D_enc)]

Return type:

enc_out

class espnet.nets.pytorch_backend.transducer.rnn_encoder.RNN(idim: int, rnn_type: str, elayers: int, eunits: int, eprojs: int, dropout_rate: float, aux_output_layers: List = [])[source]

Bases: torch.nn.modules.module.Module

RNN module.

Parameters:
  • idim – Input dimension.

  • rnn_type – RNN units type.

  • elayers – Number of RNN layers.

  • eunits – Number of units ((2 * eunits) if bidirectional)

  • eprojs – Number of final projection units.

  • dropout_rate – Dropout rate for RNN layers.

  • aux_output_layers – List of layer IDs for auxiliary RNN output sequences.

Initialize RNN module.

forward(rnn_input: torch.Tensor, rnn_len: torch.Tensor, prev_states: Optional[List[torch.Tensor]] = None) → Tuple[torch.Tensor, List[torch.Tensor], torch.Tensor][source]

RNN forward.

Parameters:
  • rnn_input – RNN input sequences. (B, T, D_in)

  • rnn_len – RNN input sequences lengths. (B,)

  • prev_states – RNN hidden states. [N x (B, T, D_proj)]

Returns:

RNN output sequences. (B, T, D_proj)

with or without intermediate RNN output sequences. ((B, T, D_proj), [N x (B, T, D_proj)])

rnn_len: RNN output sequences lengths. (B,) current_states: RNN hidden states. [N x (B, T, D_proj)]

Return type:

rnn_output

class espnet.nets.pytorch_backend.transducer.rnn_encoder.RNNP(idim: int, rnn_type: str, elayers: int, eunits: int, eprojs: int, subsample: numpy.ndarray, dropout_rate: float, aux_output_layers: List = [])[source]

Bases: torch.nn.modules.module.Module

RNN with projection layer module.

Parameters:
  • idim – Input dimension.

  • rnn_type – RNNP units type.

  • elayers – Number of RNNP layers.

  • eunits – Number of units ((2 * eunits) if bidirectional).

  • eprojs – Number of projection units.

  • subsample – Subsampling rate per layer.

  • dropout_rate – Dropout rate for RNNP layers.

  • aux_output_layers – Layer IDs for auxiliary RNNP output sequences.

Initialize RNNP module.

forward(rnn_input: torch.Tensor, rnn_len: torch.Tensor, prev_states: Optional[List[torch.Tensor]] = None) → Tuple[torch.Tensor, List[torch.Tensor], torch.Tensor][source]

RNNP forward.

Parameters:
  • rnn_input – RNN input sequences. (B, T, D_in)

  • rnn_len – RNN input sequences lengths. (B,)

  • prev_states – RNN hidden states. [N x (B, T, D_proj)]

Returns:

RNN output sequences. (B, T, D_proj)

with or without intermediate RNN output sequences. ((B, T, D_proj), [N x (B, T, D_proj)])

rnn_len: RNN output sequences lengths. (B,) current_states: RNN hidden states. [N x (B, T, D_proj)]

Return type:

rnn_output

class espnet.nets.pytorch_backend.transducer.rnn_encoder.VGG2L(in_channel: int = 1)[source]

Bases: torch.nn.modules.module.Module

VGG-like module.

Parameters:

in_channel – number of input channels

Initialize VGG-like module.

forward(feats: torch.Tensor, feats_len: torch.Tensor, **kwargs) → Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]][source]

VGG2L forward.

Parameters:
  • feats – Feature sequences. (B, F, D_feats)

  • feats_len – Feature sequences lengths. (B, )

Returns:

VGG2L output sequences. (B, F // 4, 128 * D_feats // 4) vgg_out_len: VGG2L output sequences lengths. (B,)

Return type:

vgg_out

espnet.nets.pytorch_backend.transducer.rnn_encoder.encoder_for(args: argparse.Namespace, idim: int, subsample: numpy.ndarray, aux_enc_output_layers: List = []) → torch.nn.modules.module.Module[source]

Instantiate a RNN encoder with specified arguments.

Parameters:
  • args – The model arguments.

  • idim – Input dimension.

  • subsample – Subsampling rate per layer.

  • aux_enc_output_layers – Layer IDs for auxiliary encoder output sequences.

Returns:

Encoder module.

espnet.nets.pytorch_backend.transducer.rnn_encoder.reset_backward_rnn_state(states: Union[torch.Tensor, List[Optional[torch.Tensor]]]) → Union[torch.Tensor, List[Optional[torch.Tensor]]][source]

Set backward BRNN states to zeroes.

Parameters:

states – Encoder hidden states.

Returns:

Encoder hidden states with backward set to zero.

Return type:

states

espnet.nets.pytorch_backend.transducer.arguments

Transducer model arguments.

espnet.nets.pytorch_backend.transducer.arguments.add_auxiliary_task_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Add arguments for auxiliary task.

espnet.nets.pytorch_backend.transducer.arguments.add_custom_decoder_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Define arguments for Custom decoder.

espnet.nets.pytorch_backend.transducer.arguments.add_custom_encoder_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Define arguments for Custom encoder.

espnet.nets.pytorch_backend.transducer.arguments.add_custom_training_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Define arguments for training with Custom architecture.

espnet.nets.pytorch_backend.transducer.arguments.add_decoder_general_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Define general arguments for encoder.

espnet.nets.pytorch_backend.transducer.arguments.add_encoder_general_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Define general arguments for encoder.

espnet.nets.pytorch_backend.transducer.arguments.add_rnn_decoder_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Define arguments for RNN decoder.

espnet.nets.pytorch_backend.transducer.arguments.add_rnn_encoder_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Define arguments for RNN encoder.

espnet.nets.pytorch_backend.transducer.arguments.add_transducer_arguments(group: argparse._ArgumentGroup) → argparse._ArgumentGroup[source]

Define general arguments for Transducer model.

espnet.nets.pytorch_backend.transducer.error_calculator

CER/WER computation for Transducer model.

class espnet.nets.pytorch_backend.transducer.error_calculator.ErrorCalculator(decoder: Union[espnet.nets.pytorch_backend.transducer.rnn_decoder.RNNDecoder, espnet.nets.pytorch_backend.transducer.custom_decoder.CustomDecoder], joint_network: espnet.nets.pytorch_backend.transducer.joint_network.JointNetwork, token_list: List[int], sym_space: str, sym_blank: str, report_cer: bool = False, report_wer: bool = False)[source]

Bases: object

CER and WER computation for Transducer model.

Parameters:
  • decoder – Decoder module.

  • joint_network – Joint network module.

  • token_list – Set of unique labels.

  • sym_space – Space symbol.

  • sym_blank – Blank symbol.

  • report_cer – Whether to compute CER.

  • report_wer – Whether to compute WER.

Construct an ErrorCalculator object for Transducer model.

calculate_cer(hyps: torch.Tensor, refs: torch.Tensor) → float[source]

Calculate sentence-level CER score.

Parameters:
  • hyps – Hypotheses sequences. (B, L)

  • refs – References sequences. (B, L)

Returns:

Average sentence-level CER score.

calculate_wer(hyps: torch.Tensor, refs: torch.Tensor) → float[source]

Calculate sentence-level WER score.

Parameters:
  • hyps – Hypotheses sequences. (B, L)

  • refs – References sequences. (B, L)

Returns:

Average sentence-level WER score.

convert_to_char(hyps: torch.Tensor, refs: torch.Tensor) → Tuple[List, List][source]

Convert label ID sequences to character.

Parameters:
  • hyps – Hypotheses sequences. (B, L)

  • refs – References sequences. (B, L)

Returns:

Character list of hypotheses. char_hyps: Character list of references.

Return type:

char_hyps

espnet.nets.pytorch_backend.transducer.blocks

Set of methods to create custom architecture.

espnet.nets.pytorch_backend.transducer.blocks.build_blocks(net_part: str, idim: int, input_layer_type: str, blocks: List[Dict[str, Any]], repeat_block: int = 0, self_attn_type: str = 'self_attn', positional_encoding_type: str = 'abs_pos', positionwise_layer_type: str = 'linear', positionwise_activation_type: str = 'relu', conv_mod_activation_type: str = 'relu', input_layer_dropout_rate: float = 0.0, input_layer_pos_enc_dropout_rate: float = 0.0, padding_idx: int = -1) → Tuple[Union[espnet.nets.pytorch_backend.transformer.subsampling.Conv2dSubsampling, espnet.nets.pytorch_backend.transducer.vgg2l.VGG2L, torch.nn.modules.container.Sequential], espnet.nets.pytorch_backend.transformer.repeat.MultiSequential, int, int][source]

Build custom model blocks.

Parameters:
  • net_part – Network part, either ‘encoder’ or ‘decoder’.

  • idim – Input dimension.

  • input_layer – Input layer type.

  • blocks – Blocks parameters for network part.

  • repeat_block – Number of times provided blocks are repeated.

  • positional_encoding_type – Positional encoding layer type.

  • positionwise_layer_type – Positionwise layer type.

  • positionwise_activation_type – Positionwise activation type.

  • conv_mod_activation_type – Convolutional module activation type.

  • input_layer_dropout_rate – Dropout rate for input layer.

  • input_layer_pos_enc_dropout_rate – Dropout rate for input layer pos. enc.

  • padding_idx – Padding symbol ID for embedding layer.

Returns:

Input layer all_blocks: Encoder/Decoder network. out_dim: Network output dimension. conv_subsampling_factor: Subsampling factor in frontend CNN.

Return type:

in_layer

espnet.nets.pytorch_backend.transducer.blocks.build_conformer_block(block: Dict[str, Any], self_attn_class: str, pw_layer_type: str, pw_activation_type: str, conv_mod_activation_type: str) → espnet.nets.pytorch_backend.conformer.encoder_layer.EncoderLayer[source]

Build function for conformer block.

Parameters:
  • block – Conformer block parameters.

  • self_attn_type – Self-attention module type.

  • pw_layer_type – Positionwise layer type.

  • pw_activation_type – Positionwise activation type.

  • conv_mod_activation_type – Convolutional module activation type.

Returns:

Function to create conformer (encoder) block.

espnet.nets.pytorch_backend.transducer.blocks.build_conv1d_block(block: Dict[str, Any], block_type: str) → espnet.nets.pytorch_backend.transducer.conv1d_nets.CausalConv1d[source]

Build function for causal conv1d block.

Parameters:

block – CausalConv1d or Conv1D block parameters.

Returns:

Function to create conv1d (encoder) or causal conv1d (decoder) block.

espnet.nets.pytorch_backend.transducer.blocks.build_input_layer(block: Dict[str, Any], pos_enc_class: torch.nn.modules.module.Module, padding_idx: int) → Tuple[Union[espnet.nets.pytorch_backend.transformer.subsampling.Conv2dSubsampling, espnet.nets.pytorch_backend.transducer.vgg2l.VGG2L, torch.nn.modules.container.Sequential], int][source]

Build input layer.

Parameters:
  • block – Architecture definition of input layer.

  • pos_enc_class – Positional encoding class.

  • padding_idx – Padding symbol ID for embedding layer (if provided).

Returns:

Input layer module. subsampling_factor: Subsampling factor.

espnet.nets.pytorch_backend.transducer.blocks.build_transformer_block(net_part: str, block: Dict[str, Any], pw_layer_type: str, pw_activation_type: str) → Union[espnet.nets.pytorch_backend.transformer.encoder_layer.EncoderLayer, espnet.nets.pytorch_backend.transducer.transformer_decoder_layer.TransformerDecoderLayer][source]

Build function for transformer block.

Parameters:
  • net_part – Network part, either ‘encoder’ or ‘decoder’.

  • block – Transformer block parameters.

  • pw_layer_type – Positionwise layer type.

  • pw_activation_type – Positionwise activation type.

Returns:

Function to create transformer (encoder or decoder) block.

espnet.nets.pytorch_backend.transducer.blocks.get_pos_enc_and_att_class(net_part: str, pos_enc_type: str, self_attn_type: str) → Tuple[Union[espnet.nets.pytorch_backend.transformer.embedding.PositionalEncoding, espnet.nets.pytorch_backend.transformer.embedding.ScaledPositionalEncoding, espnet.nets.pytorch_backend.transformer.embedding.RelPositionalEncoding], Union[espnet.nets.pytorch_backend.transformer.attention.MultiHeadedAttention, espnet.nets.pytorch_backend.transformer.attention.RelPositionMultiHeadedAttention]][source]

Get positional encoding and self attention module class.

Parameters:
  • net_part – Network part, either ‘encoder’ or ‘decoder’.

  • pos_enc_type – Positional encoding type.

  • self_attn_type – Self-attention type.

Returns:

Positional encoding class. self_attn_class: Self-attention class.

Return type:

pos_enc_class

espnet.nets.pytorch_backend.transducer.blocks.prepare_body_model(net_part: str, blocks: List[Dict[str, Any]]) → Tuple[int][source]

Prepare model body blocks.

Parameters:
  • net_part – Network part, either ‘encoder’ or ‘decoder’.

  • blocks – Blocks parameters for network part.

Returns:

Network output dimension.

espnet.nets.pytorch_backend.transducer.blocks.prepare_input_layer(input_layer_type: str, feats_dim: int, blocks: List[Dict[str, Any]], dropout_rate: float, pos_enc_dropout_rate: float) → Dict[str, Any][source]

Prepare input layer arguments.

Parameters:
  • input_layer_type – Input layer type.

  • feats_dim – Dimension of input features.

  • blocks – Blocks parameters for network part.

  • dropout_rate – Dropout rate for input layer.

  • pos_enc_dropout_rate – Dropout rate for input layer pos. enc.

Returns:

Input block parameters.

Return type:

input_block

espnet.nets.pytorch_backend.transducer.blocks.verify_block_arguments(net_part: str, block: Dict[str, Any], num_block: int) → Tuple[int, int][source]

Verify block arguments are valid.

Parameters:
  • net_part – Network part, either ‘encoder’ or ‘decoder’.

  • block – Block parameters.

  • num_block – Block ID.

Returns:

Input and output dimension of the block.

Return type:

block_io

espnet.nets.pytorch_backend.transducer.custom_encoder

Cutom encoder definition for transducer models.

class espnet.nets.pytorch_backend.transducer.custom_encoder.CustomEncoder(idim: int, enc_arch: List, input_layer: str = 'linear', repeat_block: int = 1, self_attn_type: str = 'selfattn', positional_encoding_type: str = 'abs_pos', positionwise_layer_type: str = 'linear', positionwise_activation_type: str = 'relu', conv_mod_activation_type: str = 'relu', aux_enc_output_layers: List = [], input_layer_dropout_rate: float = 0.0, input_layer_pos_enc_dropout_rate: float = 0.0, padding_idx: int = -1)[source]

Bases: torch.nn.modules.module.Module

Custom encoder module for transducer models.

Parameters:
  • idim – Input dimension.

  • enc_arch – Encoder block architecture (type and parameters).

  • input_layer – Input layer type.

  • repeat_block – Number of times blocks_arch is repeated.

  • self_attn_type – Self-attention type.

  • positional_encoding_type – Positional encoding type.

  • positionwise_layer_type – Positionwise layer type.

  • positionwise_activation_type – Positionwise activation type.

  • conv_mod_activation_type – Convolutional module activation type.

  • aux_enc_output_layers – Layer IDs for auxiliary encoder output sequences.

  • input_layer_dropout_rate – Dropout rate for input layer.

  • input_layer_pos_enc_dropout_rate – Dropout rate for input layer pos. enc.

  • padding_idx – Padding symbol ID for embedding layer.

Construct an CustomEncoder object.

forward(feats: torch.Tensor, mask: torch.Tensor) → Tuple[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]][source]

Encode feature sequences.

Parameters:
  • feats – Feature sequences. (B, F, D_feats)

  • feats_mask – Feature mask sequences. (B, 1, F)

Returns:

Encoder output sequences. (B, T, D_enc) with/without

Auxiliary encoder output sequences. (B, T, D_enc_aux)

enc_out_mask: Mask for encoder output sequences. (B, 1, T) with/without

Mask for auxiliary encoder output sequences. (B, T, D_enc_aux)

Return type:

enc_out

espnet.nets.pytorch_backend.transducer.transformer_decoder_layer

Transformer decoder layer definition for custom Transducer model.

class espnet.nets.pytorch_backend.transducer.transformer_decoder_layer.TransformerDecoderLayer(hdim: int, self_attention: espnet.nets.pytorch_backend.transformer.attention.MultiHeadedAttention, feed_forward: espnet.nets.pytorch_backend.transformer.positionwise_feed_forward.PositionwiseFeedForward, dropout_rate: float)[source]

Bases: torch.nn.modules.module.Module

Transformer decoder layer module for custom Transducer model.

Parameters:
  • hdim – Hidden dimension.

  • self_attention – Self-attention module.

  • feed_forward – Feed forward module.

  • dropout_rate – Dropout rate.

Construct an DecoderLayer object.

forward(sequence: torch.Tensor, mask: torch.Tensor, cache: Optional[torch.Tensor] = None)[source]

Compute previous decoder output sequences.

Parameters:
  • sequence – Transformer input sequences. (B, U, D_dec)

  • mask – Transformer intput mask sequences. (B, U)

  • cache – Cached decoder output sequences. (B, (U - 1), D_dec)

Returns:

Transformer output sequences. (B, U, D_dec) mask: Transformer output mask sequences. (B, U)

Return type:

sequence

espnet.nets.pytorch_backend.transducer.rnn_decoder

RNN decoder definition for Transducer model.

class espnet.nets.pytorch_backend.transducer.rnn_decoder.RNNDecoder(odim: int, dtype: str, dlayers: int, dunits: int, embed_dim: int, dropout_rate: float = 0.0, dropout_rate_embed: float = 0.0, blank_id: int = 0)[source]

Bases: espnet.nets.transducer_decoder_interface.TransducerDecoderInterface, torch.nn.modules.module.Module

RNN decoder module for Transducer model.

Parameters:
  • odim – Output dimension.

  • dtype – Decoder units type.

  • dlayers – Number of decoder layers.

  • dunits – Number of decoder units per layer..

  • embed_dim – Embedding layer dimension.

  • dropout_rate – Dropout rate for decoder layers.

  • dropout_rate_embed – Dropout rate for embedding layer.

  • blank_id – Blank symbol ID.

Transducer initializer.

batch_score(hyps: Union[List[espnet.nets.transducer_decoder_interface.Hypothesis], List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis]], dec_states: Tuple[torch.Tensor, Optional[torch.Tensor]], cache: Dict[str, Any], use_lm: bool) → Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor], torch.Tensor][source]

One-step forward hypotheses.

Parameters:
  • hyps – Hypotheses.

  • states – Decoder hidden states. ((N, B, D_dec), (N, B, D_dec))

  • cache – Pairs of (dec_out, dec_states) for each label sequences. (keys)

  • use_lm – Whether to compute label ID sequences for LM.

Returns:

Decoder output sequences. (B, D_dec) dec_states: Decoder hidden states. ((N, B, D_dec), (N, B, D_dec)) lm_labels: Label ID sequences for LM. (B,)

Return type:

dec_out

create_batch_states(states: Tuple[torch.Tensor, Optional[torch.Tensor]], new_states: List[Tuple[torch.Tensor, Optional[torch.Tensor]]], check_list: Optional[List] = None) → List[Tuple[torch.Tensor, Optional[torch.Tensor]]][source]

Create decoder hidden states.

Parameters:
  • states – Decoder hidden states. ((N, B, D_dec), (N, B, D_dec))

  • new_states – Decoder hidden states. [N x ((1, D_dec), (1, D_dec))]

Returns:

Decoder hidden states. ((N, B, D_dec), (N, B, D_dec))

Return type:

states

forward(labels: torch.Tensor) → torch.Tensor[source]

Encode source label sequences.

Parameters:

labels – Label ID sequences. (B, L)

Returns:

Decoder output sequences. (B, T, U, D_dec)

Return type:

dec_out

init_state(batch_size: int) → Tuple[torch.Tensor, Optional[torch._VariableFunctionsClass.tensor]][source]

Initialize decoder states.

Parameters:

batch_size – Batch size.

Returns:

Initial decoder hidden states. ((N, B, D_dec), (N, B, D_dec))

rnn_forward(sequence: torch.Tensor, state: Tuple[torch.Tensor, Optional[torch.Tensor]]) → Tuple[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]][source]

Encode source label sequences.

Parameters:
  • sequence – RNN input sequences. (B, D_emb)

  • state – Decoder hidden states. ((N, B, D_dec), (N, B, D_dec))

Returns:

RNN output sequences. (B, D_dec) (h_next, c_next): Decoder hidden states. (N, B, D_dec), (N, B, D_dec))

Return type:

sequence

score(hyp: espnet.nets.transducer_decoder_interface.Hypothesis, cache: Dict[str, Any]) → Tuple[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]], torch.Tensor][source]

One-step forward hypothesis.

Parameters:
  • hyp – Hypothesis.

  • cache – Pairs of (dec_out, state) for each label sequence. (key)

Returns:

Decoder output sequence. (1, D_dec) new_state: Decoder hidden states. ((N, 1, D_dec), (N, 1, D_dec)) label: Label ID for LM. (1,)

Return type:

dec_out

select_state(states: Tuple[torch.Tensor, Optional[torch.Tensor]], idx: int) → Tuple[torch.Tensor, Optional[torch.Tensor]][source]

Get specified ID state from decoder hidden states.

Parameters:
  • states – Decoder hidden states. ((N, B, D_dec), (N, B, D_dec))

  • idx – State ID to extract.

Returns:

Decoder hidden state for given ID.

((N, 1, D_dec), (N, 1, D_dec))

set_device(device: torch.device)[source]

Set GPU device to use.

Parameters:

device – Device ID.

espnet.nets.pytorch_backend.transducer.vgg2l

VGG2L module definition for custom encoder.

class espnet.nets.pytorch_backend.transducer.vgg2l.VGG2L(idim: int, odim: int, pos_enc: torch.nn.modules.module.Module = None)[source]

Bases: torch.nn.modules.module.Module

VGG2L module for custom encoder.

Parameters:
  • idim – Input dimension.

  • odim – Output dimension.

  • pos_enc – Positional encoding class.

Construct a VGG2L object.

create_new_mask(feats_mask: torch.Tensor) → torch.Tensor[source]

Create a subsampled mask of feature sequences.

Parameters:

feats_mask – Mask of feature sequences. (B, 1, F)

Returns:

Mask of VGG2L output sequences. (B, 1, sub(F))

Return type:

vgg_mask

forward(feats: torch.Tensor, feats_mask: torch.Tensor) → Union[Tuple[torch.Tensor, torch.Tensor], Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]][source]

Forward VGG2L bottleneck.

Parameters:
  • feats – Feature sequences. (B, F, D_feats)

  • feats_mask – Mask of feature sequences. (B, 1, F)

Returns:

VGG output sequences.

(B, sub(F), D_out) or ((B, sub(F), D_out), (B, sub(F), D_att))

vgg_mask: Mask of VGG output sequences. (B, 1, sub(F))

Return type:

vgg_output

espnet.nets.pytorch_backend.transducer.transducer_tasks

Module implementing Transducer main and auxiliary tasks.

class espnet.nets.pytorch_backend.transducer.transducer_tasks.TransducerTasks(encoder_dim: int, decoder_dim: int, joint_dim: int, output_dim: int, joint_activation_type: str = 'tanh', transducer_loss_weight: float = 1.0, ctc_loss: bool = False, ctc_loss_weight: float = 0.5, ctc_loss_dropout_rate: float = 0.0, lm_loss: bool = False, lm_loss_weight: float = 0.5, lm_loss_smoothing_rate: float = 0.0, aux_transducer_loss: bool = False, aux_transducer_loss_weight: float = 0.2, aux_transducer_loss_mlp_dim: int = 320, aux_trans_loss_mlp_dropout_rate: float = 0.0, symm_kl_div_loss: bool = False, symm_kl_div_loss_weight: float = 0.2, fastemit_lambda: float = 0.0, blank_id: int = 0, ignore_id: int = -1, training: bool = False)[source]

Bases: torch.nn.modules.module.Module

Transducer tasks module.

Initialize module for Transducer tasks.

Parameters:
  • encoder_dim – Encoder outputs dimension.

  • decoder_dim – Decoder outputs dimension.

  • joint_dim – Joint space dimension.

  • output_dim – Output dimension.

  • joint_activation_type – Type of activation for joint network.

  • transducer_loss_weight – Weight for main transducer loss.

  • ctc_loss – Compute CTC loss.

  • ctc_loss_weight – Weight of CTC loss.

  • ctc_loss_dropout_rate – Dropout rate for CTC loss inputs.

  • lm_loss – Compute LM loss.

  • lm_loss_weight – Weight of LM loss.

  • lm_loss_smoothing_rate – Smoothing rate for LM loss’ label smoothing.

  • aux_transducer_loss – Compute auxiliary transducer loss.

  • aux_transducer_loss_weight – Weight of auxiliary transducer loss.

  • aux_transducer_loss_mlp_dim – Hidden dimension for aux. transducer MLP.

  • aux_trans_loss_mlp_dropout_rate – Dropout rate for aux. transducer MLP.

  • symm_kl_div_loss – Compute KL divergence loss.

  • symm_kl_div_loss_weight – Weight of KL divergence loss.

  • fastemit_lambda – Regularization parameter for FastEmit.

  • blank_id – Blank symbol ID.

  • ignore_id – Padding symbol ID.

  • training – Whether the model was initializated in training or inference mode.

compute_aux_transducer_and_symm_kl_div_losses(aux_enc_out: torch.Tensor, dec_out: torch.Tensor, joint_out: torch.Tensor, target: torch.Tensor, aux_t_len: torch.Tensor, u_len: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]

Compute auxiliary Transducer loss and Jensen-Shannon divergence loss.

Parameters:
  • aux_enc_out – Encoder auxiliary output sequences. [N x (B, T_aux, D_enc_aux)]

  • dec_out – Decoder output sequences. (B, U, D_dec)

  • joint_out – Joint output sequences. (B, T, U, D_joint)

  • target – Target character ID sequences. (B, L)

  • aux_t_len – Auxiliary time lengths. [N x (B,)]

  • u_len – True U lengths. (B,)

Returns:

Auxiliary Transducer loss and KL divergence loss values.

compute_ctc_loss(enc_out: torch.Tensor, target: torch.Tensor, t_len: torch.Tensor, u_len: torch.Tensor)[source]

Compute CTC loss.

Parameters:
  • enc_out – Encoder output sequences. (B, T, D_enc)

  • target – Target character ID sequences. (B, U)

  • t_len – Time lengths. (B,)

  • u_len – Label lengths. (B,)

Returns:

CTC loss value.

compute_lm_loss(dec_out: torch.Tensor, target: torch.Tensor) → torch.Tensor[source]

Forward LM loss.

Parameters:
  • dec_out – Decoder output sequences. (B, U, D_dec)

  • target – Target label ID sequences. (B, U)

Returns:

LM loss value.

compute_transducer_loss(enc_out: torch.Tensor, dec_out: torch._VariableFunctionsClass.tensor, target: torch.Tensor, t_len: torch.Tensor, u_len: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]

Compute Transducer loss.

Parameters:
  • enc_out – Encoder output sequences. (B, T, D_enc)

  • dec_out – Decoder output sequences. (B, U, D_dec)

  • target – Target label ID sequences. (B, L)

  • t_len – Time lengths. (B,)

  • u_len – Label lengths. (B,)

Returns:

Joint output sequences. (B, T, U, D_joint), Transducer loss value.

Return type:

(joint_out, loss_trans)

forward(enc_out: torch.Tensor, aux_enc_out: List[torch.Tensor], dec_out: torch.Tensor, labels: torch.Tensor, enc_out_len: torch.Tensor, aux_enc_out_len: torch.Tensor) → Tuple[Tuple[Any], float, float][source]

Forward main and auxiliary task.

Parameters:
  • enc_out – Encoder output sequences. (B, T, D_enc)

  • aux_enc_out – Encoder intermediate output sequences. (B, T_aux, D_enc_aux)

  • dec_out – Decoder output sequences. (B, U, D_dec)

  • target – Target label ID sequences. (B, L)

  • t_len – Time lengths. (B,)

  • aux_t_len – Auxiliary time lengths. (B,)

  • u_len – Label lengths. (B,)

Returns:

Weighted losses.

(transducer loss, ctc loss, aux Transducer loss, KL div loss, LM loss)

cer: Sentence-level CER score. wer: Sentence-level WER score.

get_target()[source]

Set target label ID sequences.

Args:

Returns:

Target label ID sequences. (B, L)

Return type:

target

get_transducer_tasks_io(labels: torch.Tensor, enc_out_len: torch.Tensor, aux_enc_out_len: Optional[List]) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor][source]

Get Transducer tasks inputs and outputs.

Parameters:
  • labels – Label ID sequences. (B, U)

  • enc_out_len – Time lengths. (B,)

  • aux_enc_out_len – Auxiliary time lengths. [N X (B,)]

Returns:

Target label ID sequences. (B, L) lm_loss_target: LM loss target label ID sequences. (B, U) t_len: Time lengths. (B,) aux_t_len: Auxiliary time lengths. [N x (B,)] u_len: Label lengths. (B,)

Return type:

target

set_target(target: torch.Tensor)[source]

Set target label ID sequences.

Parameters:

target – Target label ID sequences. (B, L)

espnet.nets.pytorch_backend.transducer.utils

Utility functions for Transducer models.

espnet.nets.pytorch_backend.transducer.utils.check_batch_states(states, max_len, pad_id)[source]

Check decoder hidden states and left pad or trim if necessary.

Parameters:
  • state – Decoder hidden states. [N x (B, ?, D_dec)]

  • max_len – maximum sequence length.

  • pad_id – Padding symbol ID.

Returns:

Decoder hidden states. [N x (B, max_len, dec_dim)]

Return type:

final

espnet.nets.pytorch_backend.transducer.utils.check_state(state: List[Optional[torch.Tensor]], max_len: int, pad_id: int) → List[Optional[torch.Tensor]][source]

Check decoder hidden states and left pad or trim if necessary.

Parameters:
  • state – Decoder hidden states. [N x (?, D_dec)]

  • max_len – maximum sequence length.

  • pad_id – Padding symbol ID.

Returns:

Decoder hidden states. [N x (1, max_len, D_dec)]

Return type:

final

espnet.nets.pytorch_backend.transducer.utils.create_lm_batch_states(lm_states: Union[List[Any], Dict[str, Any]], lm_layers, is_wordlm: bool) → Union[List[Any], Dict[str, Any]][source]

Create LM hidden states.

Parameters:
  • lm_states – LM hidden states.

  • lm_layers – Number of LM layers.

  • is_wordlm – Whether provided LM is a word-level LM.

Returns:

LM hidden states.

Return type:

new_states

espnet.nets.pytorch_backend.transducer.utils.custom_torch_load(model_path: str, model: torch.nn.modules.module.Module, training: bool = True)[source]

Load Transducer model with training-only modules and parameters removed.

Parameters:
  • model_path – Model path.

  • model – Transducer model.

espnet.nets.pytorch_backend.transducer.utils.get_decoder_input(labels: torch.Tensor, blank_id: int, ignore_id: int) → torch.Tensor[source]

Prepare decoder input.

Parameters:

labels – Label ID sequences. (B, L)

Returns:

Label ID sequences with blank prefix. (B, U)

Return type:

decoder_input

espnet.nets.pytorch_backend.transducer.utils.init_lm_state(lm_model: torch.nn.modules.module.Module)[source]

Initialize LM hidden states.

Parameters:

lm_model – LM module.

Returns:

Initial LM hidden states.

Return type:

lm_state

espnet.nets.pytorch_backend.transducer.utils.is_prefix(x: List[int], pref: List[int]) → bool[source]

Check if pref is a prefix of x.

Parameters:
  • x – Label ID sequence.

  • pref – Prefix label ID sequence.

Returns:

Whether pref is a prefix of x.

espnet.nets.pytorch_backend.transducer.utils.pad_sequence(labels: List[int], pad_id: int) → List[int][source]

Left pad label ID sequences.

Parameters:
  • labels – Label ID sequence.

  • pad_id – Padding symbol ID.

Returns:

Padded label ID sequences.

Return type:

final

espnet.nets.pytorch_backend.transducer.utils.recombine_hyps(hyps: List[espnet.nets.transducer_decoder_interface.Hypothesis]) → List[espnet.nets.transducer_decoder_interface.Hypothesis][source]

Recombine hypotheses with same label ID sequence.

Parameters:

hyps – Hypotheses.

Returns:

Recombined hypotheses.

Return type:

final

espnet.nets.pytorch_backend.transducer.utils.select_k_expansions(hyps: List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis], topk_idxs: torch.Tensor, topk_logps: torch.Tensor, gamma: float) → List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis][source]

Return K hypotheses candidates for expansion from a list of hypothesis.

K candidates are selected according to the extended hypotheses probabilities and a prune-by-value method. Where K is equal to beam_size + beta.

Parameters:
  • hyps – Hypotheses.

  • topk_idxs – Indices of candidates hypothesis.

  • topk_logps – Log-probabilities for hypotheses expansions.

  • gamma – Allowed logp difference for prune-by-value method.

Returns:

Best K expansion hypotheses candidates.

Return type:

k_expansions

espnet.nets.pytorch_backend.transducer.utils.select_lm_state(lm_states: Union[List[Any], Dict[str, Any]], idx: int, lm_layers: int, is_wordlm: bool) → Union[List[Any], Dict[str, Any]][source]

Get ID state from LM hidden states.

Parameters:
  • lm_states – LM hidden states.

  • idx – LM state ID to extract.

  • lm_layers – Number of LM layers.

  • is_wordlm – Whether provided LM is a word-level LM.

Returns:

LM hidden state for given ID.

Return type:

idx_state

espnet.nets.pytorch_backend.transducer.utils.subtract(x: List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis], subset: List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis]) → List[espnet.nets.transducer_decoder_interface.ExtendedHypothesis][source]

Remove elements of subset if corresponding label ID sequence already exist in x.

Parameters:
  • x – Set of hypotheses.

  • subset – Subset of x.

Returns:

New set of hypotheses.

Return type:

final

espnet.nets.pytorch_backend.transducer.utils.valid_aux_encoder_output_layers(aux_layer_id: List[int], enc_num_layers: int, use_symm_kl_div_loss: bool, subsample: List[int]) → List[int][source]

Check whether provided auxiliary encoder layer IDs are valid.

Return the valid list sorted with duplicates removed.

Parameters:
  • aux_layer_id – Auxiliary encoder layer IDs.

  • enc_num_layers – Number of encoder layers.

  • use_symm_kl_div_loss – Whether symmetric KL divergence loss is used.

  • subsample – Subsampling rate per layer.

Returns:

Valid list of auxiliary encoder layers.

Return type:

valid

espnet.nets.pytorch_backend.transducer.initializer

Parameter initialization for Transducer model.

espnet.nets.pytorch_backend.transducer.initializer.initializer(model: torch.nn.modules.module.Module, args: argparse.Namespace)[source]

Initialize Transducer model.

Parameters:
  • model – Transducer model.

  • args – Namespace containing model options.

espnet.nets.pytorch_backend.transducer.__init__

Initialize sub package.

espnet.nets.pytorch_backend.transducer.joint_network

Transducer joint network implementation.

class espnet.nets.pytorch_backend.transducer.joint_network.JointNetwork(joint_output_size: int, encoder_output_size: int, decoder_output_size: int, joint_space_size: int, joint_activation_type: int)[source]

Bases: torch.nn.modules.module.Module

Transducer joint network module.

Parameters:
  • joint_output_size – Joint network output dimension

  • encoder_output_size – Encoder output dimension.

  • decoder_output_size – Decoder output dimension.

  • joint_space_size – Dimension of joint space.

  • joint_activation_type – Type of activation for joint network.

Joint network initializer.

forward(enc_out: torch.Tensor, dec_out: torch.Tensor, is_aux: bool = False, quantization: bool = False) → torch.Tensor[source]

Joint computation of encoder and decoder hidden state sequences.

Parameters:
  • enc_out – Expanded encoder output state sequences (B, T, 1, D_enc)

  • dec_out – Expanded decoder output state sequences (B, 1, U, D_dec)

  • is_aux – Whether auxiliary tasks in used.

  • quantization – Whether dynamic quantization is used.

Returns:

Joint output state sequences. (B, T, U, D_out)

Return type:

joint_out

espnet.nets.pytorch_backend.transducer.conv1d_nets

Convolution networks definition for custom archictecture.

class espnet.nets.pytorch_backend.transducer.conv1d_nets.CausalConv1d(idim: int, odim: int, kernel_size: int, stride: int = 1, dilation: int = 1, groups: int = 1, bias: bool = True, batch_norm: bool = False, relu: bool = True, dropout_rate: float = 0.0)[source]

Bases: torch.nn.modules.module.Module

1D causal convolution module for custom decoder.

Parameters:
  • idim – Input dimension.

  • odim – Output dimension.

  • kernel_size – Size of the convolving kernel.

  • stride – Stride of the convolution.

  • dilation – Spacing between the kernel points.

  • groups – Number of blocked connections from input channels to output channels.

  • bias – Whether to add a learnable bias to the output.

  • batch_norm – Whether to apply batch normalization.

  • relu – Whether to pass final output through ReLU activation.

  • dropout_rate – Dropout rate.

Construct a CausalConv1d object.

forward(sequence: torch.Tensor, mask: torch.Tensor, cache: Optional[torch.Tensor] = None) → Tuple[torch.Tensor, torch.Tensor][source]

Forward CausalConv1d for custom decoder.

Parameters:
  • sequence – CausalConv1d input sequences. (B, U, D_in)

  • mask – Mask of CausalConv1d input sequences. (B, 1, U)

Returns:

CausalConv1d output sequences. (B, sub(U), D_out) mask: Mask of CausalConv1d output sequences. (B, 1, sub(U))

Return type:

sequence

class espnet.nets.pytorch_backend.transducer.conv1d_nets.Conv1d(idim: int, odim: int, kernel_size: Union[int, Tuple], stride: Union[int, Tuple] = 1, dilation: Union[int, Tuple] = 1, groups: Union[int, Tuple] = 1, bias: bool = True, batch_norm: bool = False, relu: bool = True, dropout_rate: float = 0.0)[source]

Bases: torch.nn.modules.module.Module

1D convolution module for custom encoder.

Parameters:
  • idim – Input dimension.

  • odim – Output dimension.

  • kernel_size – Size of the convolving kernel.

  • stride – Stride of the convolution.

  • dilation – Spacing between the kernel points.

  • groups – Number of blocked connections from input channels to output channels.

  • bias – Whether to add a learnable bias to the output.

  • batch_norm – Whether to use batch normalization after convolution.

  • relu – Whether to use a ReLU activation after convolution.

  • dropout_rate – Dropout rate.

Construct a Conv1d module object.

create_new_mask(mask: torch.Tensor) → torch.Tensor[source]

Create new mask.

Parameters:

mask – Mask of input sequences. (B, 1, T)

Returns:

Mask of output sequences. (B, 1, sub(T))

Return type:

mask

create_new_pos_embed(pos_embed: torch.Tensor) → torch.Tensor[source]

Create new positional embedding vector.

Parameters:

pos_embed – Input sequences positional embedding. (B, 2 * (T - 1), D_att)

Returns:

Output sequences positional embedding.

(B, 2 * (sub(T) - 1), D_att)

Return type:

pos_embed

forward(sequence: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], mask: torch.Tensor) → Tuple[Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], torch.Tensor][source]

Forward ConvEncoderLayer module object.

Parameters:
  • sequence

    Input sequences. (B, T, D_in)

    or (B, T, D_in), (B, 2 * (T - 1), D_att)

  • mask – Mask of input sequences. (B, 1, T)

Returns:

Output sequences.
(B, sub(T), D_out)

or (B, sub(T), D_out), (B, 2 * (sub(T) - 1), D_att)

mask: Mask of output sequences. (B, 1, sub(T))

Return type:

sequence

espnet.nets.pytorch_backend.lm.default

Default Recurrent Neural Network Languge Model in lm_train.py.

class espnet.nets.pytorch_backend.lm.default.ClassifierWithState(predictor, lossfun=CrossEntropyLoss(), label_key=-1)[source]

Bases: torch.nn.modules.module.Module

A wrapper for pytorch RNNLM.

Initialize class.

:param torch.nn.Module predictor : The RNNLM :param function lossfun : The loss function to use :param int/str label_key :

buff_predict(state, x, n)[source]

Predict new tokens from buffered inputs.

final(state, index=None)[source]

Predict final log probabilities for given state using the predictor.

Parameters:

state – The state

:return The final log probabilities :rtype torch.Tensor

forward(state, *args, **kwargs)[source]

Compute the loss value for an input and label pair.

Notes

It also computes accuracy and stores it to the attribute. When label_key is int, the corresponding element in args is treated as ground truth labels. And when it is str, the element in kwargs is used. The all elements of args and kwargs except the groundtruth labels are features. It feeds features to the predictor and compare the result with ground truth labels.

:param torch.Tensor state : the LM state :param list[torch.Tensor] args : Input minibatch :param dict[torch.Tensor] kwargs : Input minibatch :return loss value :rtype torch.Tensor

predict(state, x)[source]

Predict log probabilities for given state and input x using the predictor.

:param torch.Tensor state : The current state :param torch.Tensor x : The input :return a tuple (new state, log prob vector) :rtype (torch.Tensor, torch.Tensor)

class espnet.nets.pytorch_backend.lm.default.DefaultRNNLM(n_vocab, args)[source]

Bases: espnet.nets.scorer_interface.BatchScorerInterface, espnet.nets.lm_interface.LMInterface, torch.nn.modules.module.Module

Default RNNLM for LMInterface Implementation.

Note

PyTorch seems to have memory leak when one GPU compute this after data parallel. If parallel GPUs compute this, it seems to be fine. See also https://github.com/espnet/espnet/issues/1075

Initialize class.

Parameters:
  • n_vocab (int) – The size of the vocabulary

  • args (argparse.Namespace) – configurations. see py:method:add_arguments

static add_arguments(parser)[source]

Add arguments to command line argument parser.

batch_score(ys: torch.Tensor, states: List[Any], xs: torch.Tensor) → Tuple[torch.Tensor, List[Any]][source]

Score new token batch.

Parameters:
  • ys (torch.Tensor) – torch.int64 prefix tokens (n_batch, ylen).

  • states (List[Any]) – Scorer states for prefix tokens.

  • xs (torch.Tensor) – The encoder feature that generates ys (n_batch, xlen, n_feat).

Returns:

Tuple of

batchfied scores for next token with shape of (n_batch, n_vocab) and next state list for ys.

Return type:

tuple[torch.Tensor, List[Any]]

final_score(state)[source]

Score eos.

Parameters:

state – Scorer state for prefix tokens

Returns:

final score

Return type:

float

forward(x, t)[source]

Compute LM loss value from buffer sequences.

Parameters:
  • x (torch.Tensor) – Input ids. (batch, len)

  • t (torch.Tensor) – Target ids. (batch, len)

Returns:

Tuple of

loss to backward (scalar), negative log-likelihood of t: -log p(t) (scalar) and the number of elements in x (scalar)

Return type:

tuple[torch.Tensor, torch.Tensor, torch.Tensor]

Notes

The last two return values are used in perplexity: p(t)^{-n} = exp(-log p(t) / n)

load_state_dict(d)[source]

Load state dict.

score(y, state, x)[source]

Score new token.

Parameters:
  • y (torch.Tensor) – 1D torch.int64 prefix tokens.

  • state – Scorer state for prefix tokens

  • x (torch.Tensor) – 2D encoder feature that generates ys.

Returns:

Tuple of

torch.float32 scores for next token (n_vocab) and next state for ys

Return type:

tuple[torch.Tensor, Any]

state_dict()[source]

Dump state dict.

class espnet.nets.pytorch_backend.lm.default.RNNLM(n_vocab, n_layers, n_units, n_embed=None, typ='lstm', dropout_rate=0.5, emb_dropout_rate=0.0, tie_weights=False)[source]

Bases: torch.nn.modules.module.Module

A pytorch RNNLM.

Initialize class.

Parameters:
  • n_vocab (int) – The size of the vocabulary

  • n_layers (int) – The number of layers to create

  • n_units (int) – The number of units per layer

  • typ (str) – The RNN type

forward(state, x)[source]

Forward neural networks.

zero_state(batchsize)[source]

Initialize state.

espnet.nets.pytorch_backend.lm.seq_rnn

Sequential implementation of Recurrent Neural Network Language Model.

class espnet.nets.pytorch_backend.lm.seq_rnn.SequentialRNNLM(n_vocab, args)[source]

Bases: espnet.nets.lm_interface.LMInterface, torch.nn.modules.module.Module

Sequential RNNLM.

See also

https://github.com/pytorch/examples/blob/4581968193699de14b56527296262dd76ab43557/word_language_model/model.py

Initialize class.

Parameters:
  • n_vocab (int) – The size of the vocabulary

  • args (argparse.Namespace) – configurations. see py:method:add_arguments

static add_arguments(parser)[source]

Add arguments to command line argument parser.

forward(x, t)[source]

Compute LM loss value from buffer sequences.

Parameters:
  • x (torch.Tensor) – Input ids. (batch, len)

  • t (torch.Tensor) – Target ids. (batch, len)

Returns:

Tuple of

loss to backward (scalar), negative log-likelihood of t: -log p(t) (scalar) and the number of elements in x (scalar)

Return type:

tuple[torch.Tensor, torch.Tensor, torch.Tensor]

Notes

The last two return values are used in perplexity: p(t)^{-n} = exp(-log p(t) / n)

init_state(x)[source]

Get an initial state for decoding.

Parameters:

x (torch.Tensor) – The encoded feature tensor

Returns: initial state

score(y, state, x)[source]

Score new token.

Parameters:
  • y (torch.Tensor) – 1D torch.int64 prefix tokens.

  • state – Scorer state for prefix tokens

  • x (torch.Tensor) – 2D encoder feature that generates ys.

Returns:

Tuple of

torch.float32 scores for next token (n_vocab) and next state for ys

Return type:

tuple[torch.Tensor, Any]

espnet.nets.pytorch_backend.lm.transformer

Transformer language model.

class espnet.nets.pytorch_backend.lm.transformer.TransformerLM(n_vocab, args)[source]

Bases: torch.nn.modules.module.Module, espnet.nets.lm_interface.LMInterface, espnet.nets.scorer_interface.BatchScorerInterface

Transformer language model.

Initialize class.

Parameters:
  • n_vocab (int) – The size of the vocabulary

  • args (argparse.Namespace) – configurations. see py:method:add_arguments

static add_arguments(parser)[source]

Add arguments to command line argument parser.

batch_score(ys: torch.Tensor, states: List[Any], xs: torch.Tensor) → Tuple[torch.Tensor, List[Any]][source]

Score new token batch (required).

Parameters:
  • ys (torch.Tensor) – torch.int64 prefix tokens (n_batch, ylen).

  • states (List[Any]) – Scorer states for prefix tokens.

  • xs (torch.Tensor) – The encoder feature that generates ys (n_batch, xlen, n_feat).

Returns:

Tuple of

batchfied scores for next token with shape of (n_batch, n_vocab) and next state list for ys.

Return type:

tuple[torch.Tensor, List[Any]]

forward(x: torch.Tensor, t: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor, torch.Tensor][source]

Compute LM loss value from buffer sequences.

Parameters:
  • x (torch.Tensor) – Input ids. (batch, len)

  • t (torch.Tensor) – Target ids. (batch, len)

Returns:

Tuple of

loss to backward (scalar), negative log-likelihood of t: -log p(t) (scalar) and the number of elements in x (scalar)

Return type:

tuple[torch.Tensor, torch.Tensor, torch.Tensor]

Notes

The last two return values are used in perplexity: p(t)^{-n} = exp(-log p(t) / n)

score(y: torch.Tensor, state: Any, x: torch.Tensor) → Tuple[torch.Tensor, Any][source]

Score new token.

Parameters:
  • y (torch.Tensor) – 1D torch.int64 prefix tokens.

  • state – Scorer state for prefix tokens

  • x (torch.Tensor) – encoder feature that generates ys.

Returns:

Tuple of

torch.float32 scores for next token (n_vocab) and next state for ys

Return type:

tuple[torch.Tensor, Any]

espnet.nets.pytorch_backend.lm.__init__

Initialize sub package.

espnet.nets.pytorch_backend.frontends.feature_transform

class espnet.nets.pytorch_backend.frontends.feature_transform.FeatureTransform(fs: int = 16000, n_fft: int = 512, n_mels: int = 80, fmin: float = 0.0, fmax: float = None, stats_file: str = None, apply_uttmvn: bool = True, uttmvn_norm_means: bool = True, uttmvn_norm_vars: bool = False)[source]

Bases: torch.nn.modules.module.Module

forward(x: torch_complex.tensor.ComplexTensor, ilens: Union[torch.LongTensor, numpy.ndarray, List[int]]) → Tuple[torch.Tensor, torch.LongTensor][source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class espnet.nets.pytorch_backend.frontends.feature_transform.GlobalMVN(stats_file: str, norm_means: bool = True, norm_vars: bool = True, eps: float = 1e-20)[source]

Bases: torch.nn.modules.module.Module

Apply global mean and variance normalization

Parameters:
  • stats_file (str) – npy file of 1-dim array or text file. From the _first element to the {(len(array) - 1) / 2}th element are treated as the sum of features, and the rest excluding the last elements are treated as the sum of the square value of features, and the last elements eqauls to the number of samples.

  • std_floor (float) –

extra_repr()[source]

Set the extra representation of the module

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

forward(x: torch.Tensor, ilens: torch.LongTensor) → Tuple[torch.Tensor, torch.LongTensor][source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class espnet.nets.pytorch_backend.frontends.feature_transform.LogMel(fs: int = 16000, n_fft: int = 512, n_mels: int = 80, fmin: float = 0.0, fmax: float = None, htk: bool = False, norm=1)[source]

Bases: torch.nn.modules.module.Module

Convert STFT to fbank feats

The arguments is same as librosa.filters.mel

Parameters:
  • fs – number > 0 [scalar] sampling rate of the incoming signal

  • n_fft – int > 0 [scalar] number of FFT components

  • n_mels – int > 0 [scalar] number of Mel bands to generate

  • fmin – float >= 0 [scalar] lowest frequency (in Hz)

  • fmax – float >= 0 [scalar] highest frequency (in Hz). If None, use fmax = fs / 2.0

  • htk – use HTK formula instead of Slaney

  • norm – {None, 1, np.inf} [scalar] if 1, divide the triangular mel weights by the width of the mel band (area normalization). Otherwise, leave all the triangles aiming for a peak value of 1.0

extra_repr()[source]

Set the extra representation of the module

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

forward(feat: torch.Tensor, ilens: torch.LongTensor) → Tuple[torch.Tensor, torch.LongTensor][source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class espnet.nets.pytorch_backend.frontends.feature_transform.UtteranceMVN(norm_means: bool = True, norm_vars: bool = False, eps: float = 1e-20)[source]

Bases: torch.nn.modules.module.Module

extra_repr()[source]

Set the extra representation of the module

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

forward(x: torch.Tensor, ilens: torch.LongTensor) → Tuple[torch.Tensor, torch.LongTensor][source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

espnet.nets.pytorch_backend.frontends.feature_transform.feature_transform_for(args, n_fft)[source]
espnet.nets.pytorch_backend.frontends.feature_transform.utterance_mvn(x: torch.Tensor, ilens: torch.LongTensor, norm_means: bool = True, norm_vars: bool = False, eps: float = 1e-20) → Tuple[torch.Tensor, torch.LongTensor][source]

Apply utterance mean and variance normalization

Parameters:
  • x – (B, T, D), assumed zero padded

  • ilens – (B, T, D)

  • norm_means

  • norm_vars

  • eps

espnet.nets.pytorch_backend.frontends.beamformer

espnet.nets.pytorch_backend.frontends.beamformer.apply_beamforming_vector(beamform_vector: torch_complex.tensor.ComplexTensor, mix: torch_complex.tensor.ComplexTensor) → torch_complex.tensor.ComplexTensor[source]
espnet.nets.pytorch_backend.frontends.beamformer.get_mvdr_vector(psd_s: torch_complex.tensor.ComplexTensor, psd_n: torch_complex.tensor.ComplexTensor, reference_vector: torch.Tensor, eps: float = 1e-15) → torch_complex.tensor.ComplexTensor[source]

Return the MVDR(Minimum Variance Distortionless Response) vector:

h = (Npsd^-1 @ Spsd) / (Tr(Npsd^-1 @ Spsd)) @ u

Reference:

On optimal frequency-domain multichannel linear filtering for noise reduction; M. Souden et al., 2010; https://ieeexplore.ieee.org/document/5089420

Parameters:
  • psd_s (ComplexTensor) – (…, F, C, C)

  • psd_n (ComplexTensor) – (…, F, C, C)

  • reference_vector (torch.Tensor) – (…, C)

  • eps (float) –

Returns:

(…, F, C)

Return type:

beamform_vector (ComplexTensor)r

espnet.nets.pytorch_backend.frontends.beamformer.get_power_spectral_density_matrix(xs: torch_complex.tensor.ComplexTensor, mask: torch.Tensor, normalization=True, eps: float = 1e-15) → torch_complex.tensor.ComplexTensor[source]

Return cross-channel power spectral density (PSD) matrix

Parameters:
  • xs (ComplexTensor) – (…, F, C, T)

  • mask (torch.Tensor) – (…, F, C, T)

  • normalization (bool) –

  • eps (float) –

Returns

psd (ComplexTensor): (…, F, C, C)

espnet.nets.pytorch_backend.frontends.dnn_wpe

class espnet.nets.pytorch_backend.frontends.dnn_wpe.DNN_WPE(wtype: str = 'blstmp', widim: int = 257, wlayers: int = 3, wunits: int = 300, wprojs: int = 320, dropout_rate: float = 0.0, taps: int = 5, delay: int = 3, use_dnn_mask: bool = True, iterations: int = 1, normalization: bool = False)[source]

Bases: torch.nn.modules.module.Module

forward(data: torch_complex.tensor.ComplexTensor, ilens: torch.LongTensor) → Tuple[torch_complex.tensor.ComplexTensor, torch.LongTensor, torch_complex.tensor.ComplexTensor][source]

The forward function

Notation:

B: Batch C: Channel T: Time or Sequence length F: Freq or Some dimension of the feature vector

Parameters:
  • data – (B, C, T, F)

  • ilens – (B,)

Returns:

(B, C, T, F) ilens: (B,)

Return type:

data

espnet.nets.pytorch_backend.frontends.frontend

class espnet.nets.pytorch_backend.frontends.frontend.Frontend(idim: int, use_wpe: bool = False, wtype: str = 'blstmp', wlayers: int = 3, wunits: int = 300, wprojs: int = 320, wdropout_rate: float = 0.0, taps: int = 5, delay: int = 3, use_dnn_mask_for_wpe: bool = True, use_beamformer: bool = False, btype: str = 'blstmp', blayers: int = 3, bunits: int = 300, bprojs: int = 320, bnmask: int = 2, badim: int = 320, ref_channel: int = -1, bdropout_rate=0.0)[source]

Bases: torch.nn.modules.module.Module

forward(x: torch_complex.tensor.ComplexTensor, ilens: Union[torch.LongTensor, numpy.ndarray, List[int]]) → Tuple[torch_complex.tensor.ComplexTensor, torch.LongTensor, Optional[torch_complex.tensor.ComplexTensor]][source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

espnet.nets.pytorch_backend.frontends.frontend.frontend_for(args, idim)[source]

espnet.nets.pytorch_backend.frontends.mask_estimator

class espnet.nets.pytorch_backend.frontends.mask_estimator.MaskEstimator(type, idim, layers, units, projs, dropout, nmask=1)[source]

Bases: torch.nn.modules.module.Module

forward(xs: torch_complex.tensor.ComplexTensor, ilens: torch.LongTensor) → Tuple[Tuple[torch.Tensor, ...], torch.LongTensor][source]

The forward function

Parameters:
  • xs – (B, F, C, T)

  • ilens – (B,)

Returns:

The hidden vector (B, F, C, T) masks: A tuple of the masks. (B, F, C, T) ilens: (B,)

Return type:

hs (torch.Tensor)

espnet.nets.pytorch_backend.frontends.__init__

Initialize sub package.

espnet.nets.pytorch_backend.frontends.dnn_beamformer

DNN beamformer module.

class espnet.nets.pytorch_backend.frontends.dnn_beamformer.AttentionReference(bidim, att_dim)[source]

Bases: torch.nn.modules.module.Module

forward(psd_in: torch_complex.tensor.ComplexTensor, ilens: torch.LongTensor, scaling: float = 2.0) → Tuple[torch.Tensor, torch.LongTensor][source]

The forward function

Parameters:
  • psd_in (ComplexTensor) – (B, F, C, C)

  • ilens (torch.Tensor) – (B,)

  • scaling (float) –

Returns:

(B, C) ilens (torch.Tensor): (B,)

Return type:

u (torch.Tensor)

class espnet.nets.pytorch_backend.frontends.dnn_beamformer.DNN_Beamformer(bidim, btype='blstmp', blayers=3, bunits=300, bprojs=320, bnmask=2, dropout_rate=0.0, badim=320, ref_channel: int = -1, beamformer_type='mvdr')[source]

Bases: torch.nn.modules.module.Module

DNN mask based Beamformer

Citation:

Multichannel End-to-end Speech Recognition; T. Ochiai et al., 2017; https://arxiv.org/abs/1703.04783

forward(data: torch_complex.tensor.ComplexTensor, ilens: torch.LongTensor) → Tuple[torch_complex.tensor.ComplexTensor, torch.LongTensor, torch_complex.tensor.ComplexTensor][source]

The forward function

Notation:

B: Batch C: Channel T: Time or Sequence length F: Freq

Parameters:
  • data (ComplexTensor) – (B, T, C, F)

  • ilens (torch.Tensor) – (B,)

Returns:

(B, T, F) ilens (torch.Tensor): (B,)

Return type:

enhanced (ComplexTensor)

espnet.nets.pytorch_backend.rnn.attentions

Attention modules for RNN.

class espnet.nets.pytorch_backend.rnn.attentions.AttAdd(eprojs, dunits, att_dim, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Additive attention

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_enc_h

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=2.0)[source]

AttAdd forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – dummy (does not use)

  • scaling (float) – scaling parameter before applying softmax

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

previous attention weights (B x T_max)

Return type:

torch.Tensor

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttCov(eprojs, dunits, att_dim, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Coverage mechanism attention

Reference: Get To The Point: Summarization with Pointer-Generator Network

(https://arxiv.org/abs/1704.04368)

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_enc_h

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev_list, scaling=2.0)[source]

AttCov forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev_list (list) – list of previous attention weight

  • scaling (float) – scaling parameter before applying softmax

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

list of previous attention weights

Return type:

list

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttCovLoc(eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Coverage mechanism location aware attention

This attention is a combination of coverage and location-aware attentions.

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • aconv_chans (int) – # channels of attention convolution

  • aconv_filts (int) – filter size of attention convolution

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_enc_h

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev_list, scaling=2.0)[source]

AttCovLoc forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev_list (list) – list of previous attention weight

  • scaling (float) – scaling parameter before applying softmax

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

list of previous attention weights

Return type:

list

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttDot(eprojs, dunits, att_dim, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Dot product attention

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_enc_h

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=2.0)[source]

AttDot forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – dummy (does not use)

  • att_prev (torch.Tensor) – dummy (does not use)

  • scaling (float) – scaling parameter before applying softmax

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

previous attention weight (B x T_max)

Return type:

torch.Tensor

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttForward(eprojs, dunits, att_dim, aconv_chans, aconv_filts)[source]

Bases: torch.nn.modules.module.Module

Forward attention module.

Reference: Forward attention in sequence-to-sequence acoustic modeling for speech synthesis

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • aconv_chans (int) – # channels of attention convolution

  • aconv_filts (int) – filter size of attention convolution

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=1.0, last_attended_idx=None, backward_window=1, forward_window=3)[source]

Calculate AttForward forward propagation.

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – attention weights of previous step

  • scaling (float) – scaling parameter before applying softmax

  • last_attended_idx (int) – index of the inputs of the last attended

  • backward_window (int) – backward window size in attention constraint

  • forward_window (int) – forward window size in attetion constraint

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

previous attention weights (B x T_max)

Return type:

torch.Tensor

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttForwardTA(eunits, dunits, att_dim, aconv_chans, aconv_filts, odim)[source]

Bases: torch.nn.modules.module.Module

Forward attention with transition agent module.

Reference: Forward attention in sequence-to-sequence acoustic modeling for speech synthesis

Parameters:
  • eunits (int) – # units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • aconv_chans (int) – # channels of attention convolution

  • aconv_filts (int) – filter size of attention convolution

  • odim (int) – output dimension

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev, out_prev, scaling=1.0, last_attended_idx=None, backward_window=1, forward_window=3)[source]

Calculate AttForwardTA forward propagation.

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B, Tmax, eunits)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B, dunits)

  • att_prev (torch.Tensor) – attention weights of previous step

  • out_prev (torch.Tensor) – decoder outputs of previous step (B, odim)

  • scaling (float) – scaling parameter before applying softmax

  • last_attended_idx (int) – index of the inputs of the last attended

  • backward_window (int) – backward window size in attention constraint

  • forward_window (int) – forward window size in attetion constraint

Returns:

attention weighted encoder state (B, dunits)

Return type:

torch.Tensor

Returns:

previous attention weights (B, Tmax)

Return type:

torch.Tensor

reset()[source]
class espnet.nets.pytorch_backend.rnn.attentions.AttLoc(eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

location-aware attention module.

Reference: Attention-Based Models for Speech Recognition

(https://arxiv.org/pdf/1506.07503.pdf)

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • aconv_chans (int) – # channels of attention convolution

  • aconv_filts (int) – filter size of attention convolution

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_enc_h

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=2.0, last_attended_idx=None, backward_window=1, forward_window=3)[source]

Calculate AttLoc forward propagation.

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – previous attention weight (B x T_max)

  • scaling (float) – scaling parameter before applying softmax

  • forward_window (int) – forward window size when constraining attention

  • last_attended_idx (int) – index of the inputs of the last attended

  • backward_window (int) – backward window size in attention constraint

  • forward_window – forward window size in attetion constraint

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

previous attention weights (B x T_max)

Return type:

torch.Tensor

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttLoc2D(eprojs, dunits, att_dim, att_win, aconv_chans, aconv_filts, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

2D location-aware attention

This attention is an extended version of location aware attention. It take not only one frame before attention weights, but also earlier frames into account.

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • aconv_chans (int) – # channels of attention convolution

  • aconv_filts (int) – filter size of attention convolution

  • att_win (int) – attention window size (default=5)

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_enc_h

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=2.0)[source]

AttLoc2D forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – previous attention weight (B x att_win x T_max)

  • scaling (float) – scaling parameter before applying softmax

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

previous attention weights (B x att_win x T_max)

Return type:

torch.Tensor

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttLocRec(eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

location-aware recurrent attention

This attention is an extended version of location aware attention. With the use of RNN, it take the effect of the history of attention weights into account.

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • att_dim (int) – attention dimension

  • aconv_chans (int) – # channels of attention convolution

  • aconv_filts (int) – filter size of attention convolution

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_enc_h

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev_states, scaling=2.0)[source]

AttLocRec forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev_states (tuple) – previous attention weight and lstm states ((B, T_max), ((B, att_dim), (B, att_dim)))

  • scaling (float) – scaling parameter before applying softmax

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

previous attention weights and lstm states (w, (hx, cx)) ((B, T_max), ((B, att_dim), (B, att_dim)))

Return type:

tuple

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttMultiHeadAdd(eprojs, dunits, aheads, att_dim_k, att_dim_v, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Multi head additive attention

Reference: Attention is all you need

(https://arxiv.org/abs/1706.03762)

This attention is multi head attention using additive attention for each head.

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • aheads (int) – # heads of multi head attention

  • att_dim_k (int) – dimension k in multi head attention

  • att_dim_v (int) – dimension v in multi head attention

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_k and pre_compute_v

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev)[source]

AttMultiHeadAdd forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – dummy (does not use)

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

list of previous attention weight (B x T_max) * aheads

Return type:

list

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttMultiHeadDot(eprojs, dunits, aheads, att_dim_k, att_dim_v, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Multi head dot product attention

Reference: Attention is all you need

(https://arxiv.org/abs/1706.03762)

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • aheads (int) – # heads of multi head attention

  • att_dim_k (int) – dimension k in multi head attention

  • att_dim_v (int) – dimension v in multi head attention

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_k and pre_compute_v

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev)[source]

AttMultiHeadDot forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – dummy (does not use)

Returns:

attention weighted encoder state (B x D_enc)

Return type:

torch.Tensor

Returns:

list of previous attention weight (B x T_max) * aheads

Return type:

list

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttMultiHeadLoc(eprojs, dunits, aheads, att_dim_k, att_dim_v, aconv_chans, aconv_filts, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Multi head location based attention

Reference: Attention is all you need

(https://arxiv.org/abs/1706.03762)

This attention is multi head attention using location-aware attention for each head.

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • aheads (int) – # heads of multi head attention

  • att_dim_k (int) – dimension k in multi head attention

  • att_dim_v (int) – dimension v in multi head attention

  • aconv_chans (int) – # channels of attention convolution

  • aconv_filts (int) – filter size of attention convolution

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_k and pre_compute_v

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev, scaling=2.0)[source]

AttMultiHeadLoc forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – list of previous attention weight (B x T_max) * aheads

  • scaling (float) – scaling parameter before applying softmax

Returns:

attention weighted encoder state (B x D_enc)

Return type:

torch.Tensor

Returns:

list of previous attention weight (B x T_max) * aheads

Return type:

list

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.AttMultiHeadMultiResLoc(eprojs, dunits, aheads, att_dim_k, att_dim_v, aconv_chans, aconv_filts, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Multi head multi resolution location based attention

Reference: Attention is all you need

(https://arxiv.org/abs/1706.03762)

This attention is multi head attention using location-aware attention for each head. Furthermore, it uses different filter size for each head.

Parameters:
  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • aheads (int) – # heads of multi head attention

  • att_dim_k (int) – dimension k in multi head attention

  • att_dim_v (int) – dimension v in multi head attention

  • aconv_chans (int) – maximum # channels of attention convolution each head use #ch = aconv_chans * (head + 1) / aheads e.g. aheads=4, aconv_chans=100 => filter size = 25, 50, 75, 100

  • aconv_filts (int) – filter size of attention convolution

  • han_mode (bool) – flag to swith on mode of hierarchical attention and not store pre_compute_k and pre_compute_v

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev)[source]

AttMultiHeadMultiResLoc forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B x T_max x D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – list of previous attention weight (B x T_max) * aheads

Returns:

attention weighted encoder state (B x D_enc)

Return type:

torch.Tensor

Returns:

list of previous attention weight (B x T_max) * aheads

Return type:

list

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.GDCAttLoc(eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False)[source]

Bases: torch.nn.modules.module.Module

Global duration control attention module. Reference: Singing-Tacotron: Global Duration Control Attention and Dynamic Filter for End-to-end Singing Voice Synthesis (https://arxiv.org/abs/2202.07907) :param int eprojs: # projection-units of encoder :param int dunits: # units of decoder :param int att_dim: attention dimension :param int aconv_chans: # channels of attention convolution :param int aconv_filts: filter size of attention convolution :param bool han_mode: flag to swith on mode of hierarchical attention

and not store pre_compute_enc_h

forward(enc_hs_pad, enc_hs_len, trans_token, dec_z, att_prev, scaling=1.0, last_attended_idx=None, backward_window=1, forward_window=3)[source]

Calcualte AttLoc forward propagation. :param torch.Tensor enc_hs_pad: padded encoder hidden state (B x T_max x D_enc) :param list enc_hs_len: padded encoder hidden state length (B) :param torch.Tensor trans_token: Global transition token

for duration (B x T_max x 1)

Parameters:
  • dec_z (torch.Tensor) – decoder hidden state (B x D_dec)

  • att_prev (torch.Tensor) – previous attention weight (B x T_max)

  • scaling (float) – scaling parameter before applying softmax

  • forward_window (int) – forward window size when constraining attention

  • last_attended_idx (int) – index of the inputs of the last attended

  • backward_window (int) – backward window size in attention constraint

  • forward_window – forward window size in attetion constraint

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

previous attention weights (B x T_max)

Return type:

torch.Tensor

reset()[source]

reset states

class espnet.nets.pytorch_backend.rnn.attentions.NoAtt[source]

Bases: torch.nn.modules.module.Module

No attention

forward(enc_hs_pad, enc_hs_len, dec_z, att_prev)[source]

NoAtt forward

Parameters:
  • enc_hs_pad (torch.Tensor) – padded encoder hidden state (B, T_max, D_enc)

  • enc_hs_len (list) – padded encoder hidden state length (B)

  • dec_z (torch.Tensor) – dummy (does not use)

  • att_prev (torch.Tensor) – dummy (does not use)

Returns:

attention weighted encoder state (B, D_enc)

Return type:

torch.Tensor

Returns:

previous attention weights

Return type:

torch.Tensor

reset()[source]

reset states

espnet.nets.pytorch_backend.rnn.attentions.att_for(args, num_att=1, han_mode=False)[source]

Instantiates an attention module given the program arguments

Parameters:
  • args (Namespace) – The arguments

  • num_att (int) – number of attention modules (in multi-speaker case, it can be 2 or more)

  • han_mode (bool) – switch on/off mode of hierarchical attention network (HAN)

:rtype torch.nn.Module :return: The attention module

espnet.nets.pytorch_backend.rnn.attentions.att_to_numpy(att_ws, att)[source]

Converts attention weights to a numpy array given the attention

Parameters:
  • att_ws (list) – The attention weights

  • att (torch.nn.Module) – The attention

Return type:

np.ndarray

Returns:

The numpy array of the attention weights

espnet.nets.pytorch_backend.rnn.attentions.initial_att(atype, eprojs, dunits, aheads, adim, awin, aconv_chans, aconv_filts, han_mode=False)[source]

Instantiates a single attention module

Parameters:
  • atype (str) – attention type

  • eprojs (int) – # projection-units of encoder

  • dunits (int) – # units of decoder

  • aheads (int) – # heads of multi head attention

  • adim (int) – attention dimension

  • awin (int) – attention window size

  • aconv_chans (int) – # channels of attention convolution

  • aconv_filts (int) – filter size of attention convolution

  • han_mode (bool) – flag to swith on mode of hierarchical attention

Returns:

The attention module

espnet.nets.pytorch_backend.rnn.decoders

RNN decoder module.

class espnet.nets.pytorch_backend.rnn.decoders.Decoder(eprojs, odim, dtype, dlayers, dunits, sos, eos, att, verbose=0, char_list=None, labeldist=None, lsm_weight=0.0, sampling_probability=0.0, dropout=0.0, context_residual=False, replace_sos=False, num_encs=1)[source]

Bases: torch.nn.modules.module.Module, espnet.nets.scorer_interface.ScorerInterface

Decoder module

Parameters:
  • eprojs (int) – encoder projection units

  • odim (int) – dimension of outputs

  • dtype (str) – gru or lstm

  • dlayers (int) – decoder layers

  • dunits (int) – decoder units

  • sos (int) – start of sequence symbol id

  • eos (int) – end of sequence symbol id

  • att (torch.nn.Module) – attention module

  • verbose (int) – verbose level

  • char_list (list) – list of character strings

  • labeldist (ndarray) – distribution of label smoothing

  • lsm_weight (float) – label smoothing weight

  • sampling_probability (float) – scheduled sampling probability

  • dropout (float) – dropout rate

  • context_residual (float) – if True, use context vector for token generation

  • replace_sos (float) – use for multilingual (speech/text) translation

calculate_all_attentions(hs_pad, hlen, ys_pad, strm_idx=0, lang_ids=None)[source]

Calculate all of attentions

Parameters:
  • hs_pad (torch.Tensor) – batch of padded hidden state sequences (B, Tmax, D) in multi-encoder case, list of torch.Tensor, [(B, Tmax_1, D), (B, Tmax_2, D), …, ] ]

  • hlen (torch.Tensor) – batch of lengths of hidden state sequences (B) [in multi-encoder case, list of torch.Tensor, [(B), (B), …, ]

  • ys_pad (torch.Tensor) – batch of padded character id sequence tensor (B, Lmax)

  • strm_idx (int) – stream index for parallel speaker attention in multi-speaker case

  • lang_ids (torch.Tensor) – batch of target language id tensor (B, 1)

Returns:

attention weights with the following shape, 1) multi-head case => attention weights (B, H, Lmax, Tmax), 2) multi-encoder case =>

[(B, Lmax, Tmax1), (B, Lmax, Tmax2), …, (B, Lmax, NumEncs)]

  1. other case => attention weights (B, Lmax, Tmax).

Return type:

float ndarray

forward(hs_pad, hlens, ys_pad, strm_idx=0, lang_ids=None)[source]

Decoder forward

Parameters:
  • hs_pad (torch.Tensor) – batch of padded hidden state sequences (B, Tmax, D) [in multi-encoder case, list of torch.Tensor, [(B, Tmax_1, D), (B, Tmax_2, D), …, ] ]

  • hlens (torch.Tensor) – batch of lengths of hidden state sequences (B) [in multi-encoder case, list of torch.Tensor, [(B), (B), …, ]

  • ys_pad (torch.Tensor) – batch of padded character id sequence tensor (B, Lmax)

  • strm_idx (int) – stream index indicates the index of decoding stream.

  • lang_ids (torch.Tensor) – batch of target language id tensor (B, 1)

Returns:

attention loss value

Return type:

torch.Tensor

Returns:

accuracy

Return type:

float

init_state(x)[source]

Get an initial state for decoding (optional).

Parameters:

x (torch.Tensor) – The encoded feature tensor

Returns: initial state

recognize_beam(h, lpz, recog_args, char_list, rnnlm=None, strm_idx=0)[source]

beam search implementation

Parameters:
  • h (torch.Tensor) – encoder hidden state (T, eprojs) [in multi-encoder case, list of torch.Tensor, [(T1, eprojs), (T2, eprojs), …] ]

  • lpz (torch.Tensor) – ctc log softmax output (T, odim) [in multi-encoder case, list of torch.Tensor, [(T1, odim), (T2, odim), …] ]

  • recog_args (Namespace) – argument Namespace containing options

  • char_list – list of character strings

  • rnnlm (torch.nn.Module) – language module

  • strm_idx (int) – stream index for speaker parallel attention in multi-speaker case

Returns:

N-best decoding results

Return type:

list of dicts

recognize_beam_batch(h, hlens, lpz, recog_args, char_list, rnnlm=None, normalize_score=True, strm_idx=0, lang_ids=None)[source]
rnn_forward(ey, z_list, c_list, z_prev, c_prev)[source]
score(yseq, state, x)[source]

Score new token (required).

Parameters:
  • y (torch.Tensor) – 1D torch.int64 prefix tokens.

  • state – Scorer state for prefix tokens

  • x (torch.Tensor) – The encoder feature that generates ys.

Returns:

Tuple of

scores for next token that has a shape of (n_vocab) and next state for ys

Return type:

tuple[torch.Tensor, Any]

zero_state(hs_pad)[source]
espnet.nets.pytorch_backend.rnn.decoders.decoder_for(args, odim, sos, eos, att, labeldist)[source]

espnet.nets.pytorch_backend.rnn.encoders

class espnet.nets.pytorch_backend.rnn.encoders.Encoder(etype, idim, elayers, eunits, eprojs, subsample, dropout, in_channel=1)[source]

Bases: torch.nn.modules.module.Module

Encoder module

Parameters:
  • etype (str) – type of encoder network

  • idim (int) – number of dimensions of encoder network

  • elayers (int) – number of layers of encoder network

  • eunits (int) – number of lstm units of encoder network

  • eprojs (int) – number of projection units of encoder network

  • subsample (np.ndarray) – list of subsampling numbers

  • dropout (float) – dropout rate

  • in_channel (int) – number of input channels

forward(xs_pad, ilens, prev_states=None)[source]

Encoder forward

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, D)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • prev_state (torch.Tensor) – batch of previous encoder hidden states (?, …)

Returns:

batch of hidden state sequences (B, Tmax, eprojs)

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.rnn.encoders.RNN(idim, elayers, cdim, hdim, dropout, typ='blstm')[source]

Bases: torch.nn.modules.module.Module

RNN module

Parameters:
  • idim (int) – dimension of inputs

  • elayers (int) – number of encoder layers

  • cdim (int) – number of rnn units (resulted in cdim * 2 if bidirectional)

  • hdim (int) – number of final projection units

  • dropout (float) – dropout rate

  • typ (str) – The RNN type

forward(xs_pad, ilens, prev_state=None)[source]

RNN forward

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, D)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • prev_state (torch.Tensor) – batch of previous RNN states

Returns:

batch of hidden state sequences (B, Tmax, eprojs)

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.rnn.encoders.RNNP(idim, elayers, cdim, hdim, subsample, dropout, typ='blstm')[source]

Bases: torch.nn.modules.module.Module

RNN with projection layer module

Parameters:
  • idim (int) – dimension of inputs

  • elayers (int) – number of encoder layers

  • cdim (int) – number of rnn units (resulted in cdim * 2 if bidirectional)

  • hdim (int) – number of projection units

  • subsample (np.ndarray) – list of subsampling numbers

  • dropout (float) – dropout rate

  • typ (str) – The RNN type

forward(xs_pad, ilens, prev_state=None)[source]

RNNP forward

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, idim)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

  • prev_state (torch.Tensor) – batch of previous RNN states

Returns:

batch of hidden state sequences (B, Tmax, hdim)

Return type:

torch.Tensor

class espnet.nets.pytorch_backend.rnn.encoders.VGG2L(in_channel=1)[source]

Bases: torch.nn.modules.module.Module

VGG-like module

Parameters:

in_channel (int) – number of input channels

forward(xs_pad, ilens, **kwargs)[source]

VGG2L forward

Parameters:
  • xs_pad (torch.Tensor) – batch of padded input sequences (B, Tmax, D)

  • ilens (torch.Tensor) – batch of lengths of input sequences (B)

Returns:

batch of padded hidden state sequences (B, Tmax // 4, 128 * D // 4)

Return type:

torch.Tensor

espnet.nets.pytorch_backend.rnn.encoders.encoder_for(args, idim, subsample)[source]

Instantiates an encoder module given the program arguments

Parameters:
  • args (Namespace) – The arguments

  • or List of integer idim (int) – dimension of input, e.g. 83, or List of dimensions of inputs, e.g. [83,83]

  • or List of List subsample (List) –

    subsample factors, e.g. [1,2,2,1,1], or List of subsample factors of each encoder.

    e.g. [[1,2,2,1,1], [1,2,2,1,1]]

:rtype torch.nn.Module :return: The encoder module

espnet.nets.pytorch_backend.rnn.encoders.reset_backward_rnn_state(states)[source]

Sets backward BRNN states to zeroes

Useful in processing of sliding windows over the inputs

espnet.nets.pytorch_backend.rnn.__init__

Initialize sub package.

espnet.nets.pytorch_backend.rnn.argument

Conformer common arguments.

espnet.nets.pytorch_backend.rnn.argument.add_arguments_rnn_attention_common(group)[source]

Define common arguments for RNN attention.

espnet.nets.pytorch_backend.rnn.argument.add_arguments_rnn_decoder_common(group)[source]

Define common arguments for RNN decoder.

espnet.nets.pytorch_backend.rnn.argument.add_arguments_rnn_encoder_common(group)[source]

Define common arguments for RNN encoder.

espnet.nets.pytorch_backend.streaming.window

class espnet.nets.pytorch_backend.streaming.window.WindowStreamingE2E(e2e, recog_args, rnnlm=None)[source]

Bases: object

WindowStreamingE2E constructor.

Parameters:
  • e2e (E2E) – E2E ASR object

  • recog_args – arguments for “recognize” method of E2E

accept_input(x)[source]

Call this method each time a new batch of input is available.

decode_with_attention_offline()[source]

Run the attention decoder offline.

Works even if the previous layers (encoder and CTC decoder) were being run in the online mode. This method should be run after all the audio has been consumed. This is used mostly to compare the results between offline and online implementation of the previous layers.

espnet.nets.pytorch_backend.streaming.segment

class espnet.nets.pytorch_backend.streaming.segment.SegmentStreamingE2E(e2e, recog_args, rnnlm=None)[source]

Bases: object

SegmentStreamingE2E constructor.

Parameters:
  • e2e (E2E) – E2E ASR object

  • recog_args – arguments for “recognize” method of E2E

accept_input(x)[source]

Call this method each time a new batch of input is available.

espnet.nets.pytorch_backend.streaming.__init__

Initialize sub package.