espnet2.asvspoof package¶
espnet2.asvspoof.espnet_model¶
-
class
espnet2.asvspoof.espnet_model.ESPnetASVSpoofModel(frontend: Optional[espnet2.asr.frontend.abs_frontend.AbsFrontend], specaug: Optional[espnet2.asr.specaug.abs_specaug.AbsSpecAug], normalize: Optional[espnet2.layers.abs_normalize.AbsNormalize], encoder: espnet2.asr.encoder.abs_encoder.AbsEncoder, preencoder: Optional[espnet2.asr.preencoder.abs_preencoder.AbsPreEncoder], decoder: espnet2.asvspoof.decoder.abs_decoder.AbsDecoder, losses: Dict[str, espnet2.asvspoof.loss.abs_loss.AbsASVSpoofLoss])[source]¶ Bases:
espnet2.train.abs_espnet_model.AbsESPnetModelASV Spoofing model A simple ASV Spoofing model
-
collect_feats(speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs) → Dict[str, torch.Tensor][source]¶
-
encode(speech: torch.Tensor, speech_lengths: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]¶ Frontend + Encoder :param speech: (Batch, Length, …) :param speech_lengths: (Batch,) :param bottleneck_feats: (Batch, Length, …): used for enh + diar
-
forward(speech: torch.Tensor, speech_lengths: torch.Tensor = None, label: torch.Tensor = None, **kwargs) → Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor][source]¶ Frontend + Encoder + Decoder + Calc loss :param speech: (Batch, samples) :param spk_labels: (Batch, ) :param kwargs: “utt_id” is among the input.
-
espnet2.asvspoof.__init__¶
espnet2.asvspoof.loss.binary_loss¶
-
class
espnet2.asvspoof.loss.binary_loss.ASVSpoofBinaryLoss(weight: float = 1.0)[source]¶ Bases:
espnet2.asvspoof.loss.abs_loss.AbsASVSpoofLossBinary loss for ASV Spoofing.
espnet2.asvspoof.loss.am_softmax_loss¶
-
class
espnet2.asvspoof.loss.am_softmax_loss.ASVSpoofAMSoftmaxLoss(weight: float = 1.0, enc_dim: int = 128, s: float = 20, m: float = 0.5)[source]¶ Bases:
espnet2.asvspoof.loss.abs_loss.AbsASVSpoofLossBinary loss for ASV Spoofing.
espnet2.asvspoof.loss.oc_softmax_loss¶
-
class
espnet2.asvspoof.loss.oc_softmax_loss.ASVSpoofOCSoftmaxLoss(weight: float = 1.0, enc_dim: int = 128, m_real: float = 0.5, m_fake: float = 0.2, alpha: float = 20.0)[source]¶ Bases:
espnet2.asvspoof.loss.abs_loss.AbsASVSpoofLossBinary loss for ASV Spoofing.
espnet2.asvspoof.loss.__init__¶
espnet2.asvspoof.loss.abs_loss¶
-
class
espnet2.asvspoof.loss.abs_loss.AbsASVSpoofLoss[source]¶ Bases:
torch.nn.modules.module.Module,abc.ABCBase class for all ASV Spoofing loss modules.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
-
abstract
forward(ref, inf) → torch.Tensor[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.-
property
name¶
espnet2.asvspoof.decoder.abs_decoder¶
-
class
espnet2.asvspoof.decoder.abs_decoder.AbsDecoder[source]¶ Bases:
torch.nn.modules.module.Module,abc.ABCInitializes internal Module state, shared by both nn.Module and ScriptModule.
-
abstract
forward(input: torch.Tensor, ilens: torch.Tensor) → Tuple[torch.Tensor, torch.Tensor][source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.espnet2.asvspoof.decoder.__init__¶
espnet2.asvspoof.decoder.linear_decoder¶
-
class
espnet2.asvspoof.decoder.linear_decoder.LinearDecoder(encoder_output_size: int)[source]¶ Bases:
espnet2.asvspoof.decoder.abs_decoder.AbsDecoderLinear decoder for speaker diarization
-
class
-
abstract
-
property
-
abstract