import argparse
import logging
from typing import Callable, Collection, Dict, List, Optional, Tuple
import numpy as np
import torch
from typeguard import check_argument_types, check_return_type
from espnet2.asr.encoder.abs_encoder import AbsEncoder
# TODO1 (checkpoint 2): import conformer class class
from espnet2.asr.encoder.transformer_encoder import TransformerEncoder
from espnet2.asr.frontend.abs_frontend import AbsFrontend
from espnet2.asr.frontend.default import DefaultFrontend
from espnet2.asr.frontend.fused import FusedFrontends
from espnet2.asr.frontend.s3prl import S3prlFrontend
from espnet2.asr.frontend.windowing import SlidingWindow
from espnet2.asr.preencoder.abs_preencoder import AbsPreEncoder
from espnet2.asr.preencoder.linear import LinearProjection
from espnet2.asr.preencoder.sinc import LightweightSincConvs
from espnet2.asr.specaug.abs_specaug import AbsSpecAug
from espnet2.asr.specaug.specaug import SpecAug
from espnet2.asvspoof.decoder.abs_decoder import AbsDecoder
from espnet2.asvspoof.decoder.linear_decoder import LinearDecoder
from espnet2.asvspoof.espnet_model import ESPnetASVSpoofModel
from espnet2.asvspoof.loss.abs_loss import AbsASVSpoofLoss
from espnet2.asvspoof.loss.am_softmax_loss import ASVSpoofAMSoftmaxLoss
from espnet2.asvspoof.loss.binary_loss import ASVSpoofBinaryLoss
from espnet2.asvspoof.loss.oc_softmax_loss import ASVSpoofOCSoftmaxLoss
from espnet2.layers.abs_normalize import AbsNormalize
from espnet2.layers.global_mvn import GlobalMVN
from espnet2.layers.utterance_mvn import UtteranceMVN
from espnet2.tasks.abs_task import AbsTask
from espnet2.torch_utils.initialize import initialize
from espnet2.train.class_choices import ClassChoices
from espnet2.train.collate_fn import CommonCollateFn
from espnet2.train.preprocessor import CommonPreprocessor
from espnet2.train.trainer import Trainer
from espnet2.utils.nested_dict_action import NestedDictAction
from espnet2.utils.types import int_or_none, str2bool, str_or_none
frontend_choices = ClassChoices(
name="frontend",
classes=dict(
default=DefaultFrontend,
sliding_window=SlidingWindow,
s3prl=S3prlFrontend,
fused=FusedFrontends,
),
type_check=AbsFrontend,
default="default",
)
specaug_choices = ClassChoices(
name="specaug",
classes=dict(
specaug=SpecAug,
),
type_check=AbsSpecAug,
default=None,
optional=True,
)
normalize_choices = ClassChoices(
"normalize",
classes=dict(
global_mvn=GlobalMVN,
utterance_mvn=UtteranceMVN,
),
type_check=AbsNormalize,
default="utterance_mvn",
optional=True,
)
preencoder_choices = ClassChoices(
name="preencoder",
classes=dict(
sinc=LightweightSincConvs,
linear=LinearProjection,
),
type_check=AbsPreEncoder,
default=None,
optional=True,
)
encoder_choices = ClassChoices(
"encoder",
classes=dict(
# TODO2 (checkpoint 2): add conformer option in encoder
transformer=TransformerEncoder,
),
type_check=AbsEncoder,
default="transformer",
)
decoder_choices = ClassChoices(
"decoder",
classes=dict(
linear=LinearDecoder,
),
type_check=AbsDecoder,
default="linear",
)
losses_choices = ClassChoices(
name="losses",
classes=dict(
binary_loss=ASVSpoofBinaryLoss,
am_softmax_loss=ASVSpoofAMSoftmaxLoss,
oc_softmax_loss=ASVSpoofOCSoftmaxLoss,
),
type_check=AbsASVSpoofLoss,
default=None,
)
[docs]class ASVSpoofTask(AbsTask):
# If you need more than one optimizers, change this value
num_optimizers: int = 1
# Add variable objects configurations
class_choices_list = [
# --frontend and --frontend_conf
frontend_choices,
# --specaug and --specaug_conf
specaug_choices,
# --normalize and --normalize_conf
normalize_choices,
# --preencoder and --preencoder_conf
preencoder_choices,
# --encoder and --encoder_conf
encoder_choices,
# --decoder and --decoder_conf
decoder_choices,
]
# If you need to modify train() or eval() procedures, change Trainer class here
trainer = Trainer
[docs] @classmethod
def add_task_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(description="Task related")
# NOTE(kamo): add_arguments(..., required=True) can't be used
# to provide --print_config mode. Instead of it, do as
group.add_argument(
"--init",
type=lambda x: str_or_none(x.lower()),
default=None,
help="The initialization method",
choices=[
"chainer",
"xavier_uniform",
"xavier_normal",
"kaiming_uniform",
"kaiming_normal",
None,
],
)
group.add_argument(
"--input_size",
type=int_or_none,
default=None,
help="The number of input dimension of the feature",
)
group = parser.add_argument_group(description="Preprocess related")
group.add_argument(
"--use_preprocessor",
type=str2bool,
default=True,
help="Apply preprocessing to data or not",
)
group.add_argument(
"--losses",
action=NestedDictAction,
default=[
{
"name": "sigmoid_loss",
"conf": {},
},
],
help="The criterions binded with the loss wrappers.",
)
for class_choices in cls.class_choices_list:
# Append --<name> and --<name>_conf.
# e.g. --encoder and --encoder_conf
class_choices.add_arguments(group)
[docs] @classmethod
def build_collate_fn(
cls, args: argparse.Namespace, train: bool
) -> Callable[
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
Tuple[List[str], Dict[str, torch.Tensor]],
]:
assert check_argument_types()
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
[docs] @classmethod
def build_preprocess_fn(
cls, args: argparse.Namespace, train: bool
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
assert check_argument_types()
if args.use_preprocessor:
retval = CommonPreprocessor(
train=train,
)
else:
retval = None
assert check_return_type(retval)
return retval
[docs] @classmethod
def required_data_names(
cls, train: bool = True, inference: bool = False
) -> Tuple[str, ...]:
if not inference:
retval = ("speech", "label")
else:
# Recognition mode
retval = ("speech",)
return retval
[docs] @classmethod
def optional_data_names(
cls, train: bool = True, inference: bool = False
) -> Tuple[str, ...]:
retval = ()
assert check_return_type(retval)
return retval
[docs] @classmethod
def build_model(cls, args: argparse.Namespace) -> ESPnetASVSpoofModel:
assert check_argument_types()
# 1. frontend
if args.input_size is None:
# Extract features in the model
frontend_class = frontend_choices.get_class(args.frontend)
frontend = frontend_class(**args.frontend_conf)
input_size = frontend.output_size()
else:
# Give features from data-loader
args.frontend = None
args.frontend_conf = {}
frontend = None
input_size = args.input_size
# 2. Data augmentation for spectrogram
if args.specaug is not None:
specaug_class = specaug_choices.get_class(args.specaug)
specaug = specaug_class(**args.specaug_conf)
else:
specaug = None
# 3. Normalization layer
if args.normalize is not None:
normalize_class = normalize_choices.get_class(args.normalize)
normalize = normalize_class(**args.normalize_conf)
else:
normalize = None
# 4. Pre-encoder input block
# NOTE(kan-bayashi): Use getattr to keep the compatibility
if getattr(args, "preencoder", None) is not None:
preencoder_class = preencoder_choices.get_class(args.preencoder)
preencoder = preencoder_class(**args.preencoder_conf)
input_size = preencoder.output_size()
else:
preencoder = None
# 4. Encoder
encoder_class = encoder_choices.get_class(args.encoder)
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
encoder_output_size = encoder.output_size()
# 5. Decoder
decoder_class = decoder_choices.get_class(args.decoder)
decoder = decoder_class(
encoder_output_size=encoder_output_size,
**args.decoder_conf,
)
# 6. Loss definition
losses = {}
if getattr(args, "losses", None) is not None:
# This check is for the compatibility when load models
# that packed by older version
for ctr in args.losses:
if "softmax" in ctr["name"]:
loss = losses_choices.get_class(ctr["name"])(
enc_dim=encoder_output_size, **ctr["conf"]
)
else:
loss = losses_choices.get_class(ctr["name"])(**ctr["conf"])
losses[ctr["name"]] = loss
# 7. Build model
model = ESPnetASVSpoofModel(
frontend=frontend,
specaug=specaug,
normalize=normalize,
preencoder=preencoder,
encoder=encoder,
decoder=decoder,
losses=losses,
)
# 8. Initialize
if args.init is not None:
initialize(model, args.init)
assert check_return_type(model)
return model