espnet2.main_funcs package¶
espnet2.main_funcs.pack_funcs¶
-
class
espnet2.main_funcs.pack_funcs.
Archiver
(file, mode='r')[source]¶ Bases:
object
-
espnet2.main_funcs.pack_funcs.
get_dict_from_cache
(meta: Union[pathlib.Path, str]) → Optional[Dict[str, str]][source]¶
-
espnet2.main_funcs.pack_funcs.
pack
(files: Dict[str, Union[str, pathlib.Path]], yaml_files: Dict[str, Union[str, pathlib.Path]], outpath: Union[str, pathlib.Path], option: Iterable[Union[str, pathlib.Path]] = ())[source]¶
-
espnet2.main_funcs.pack_funcs.
unpack
(input_archive: Union[pathlib.Path, str], outpath: Union[pathlib.Path, str], use_cache: bool = True) → Dict[str, str][source]¶ Scan all files in the archive file and return as a dict of files.
Examples
- tarfile:
model.pth some1.file some2.file
>>> unpack("tarfile", "out") {'asr_model_file': 'out/model.pth'}
espnet2.main_funcs.collect_stats¶
-
espnet2.main_funcs.collect_stats.
collect_stats
(model: Optional[espnet2.train.abs_espnet_model.AbsESPnetModel], train_iter: Iterable[Tuple[List[str], Dict[str, torch.Tensor]]], valid_iter: Iterable[Tuple[List[str], Dict[str, torch.Tensor]]], output_dir: pathlib.Path, ngpu: Optional[int], log_interval: Optional[int], write_collected_feats: bool) → None[source]¶ Perform on collect_stats mode.
Running for deriving the shape information from data and gathering statistics. This method is used before executing train().
espnet2.main_funcs.average_nbest_models¶
-
espnet2.main_funcs.average_nbest_models.
average_nbest_models
(output_dir: pathlib.Path, reporter: espnet2.train.reporter.Reporter, best_model_criterion: Sequence[Sequence[str]], nbest: Union[Collection[int], int], suffix: Optional[str] = None) → None[source]¶ Generate averaged model from n-best models
- Parameters:
output_dir – The directory contains the model file for each epoch
reporter – Reporter instance
best_model_criterion – Give criterions to decide the best model. e.g. [(“valid”, “loss”, “min”), (“train”, “acc”, “max”)]
nbest – Number of best model files to be averaged
suffix – A suffix added to the averaged model file name
espnet2.main_funcs.calculate_all_attentions¶
-
espnet2.main_funcs.calculate_all_attentions.
calculate_all_attentions
(model: espnet2.train.abs_espnet_model.AbsESPnetModel, batch: Dict[str, torch.Tensor]) → Dict[str, List[torch.Tensor]][source]¶ Derive the outputs from the all attention layers
- Parameters:
model –
batch – same as forward
- Returns:
A dict of a list of tensor. key_names x batch x (D1, D2, …)
- Return type:
return_dict