"""Dynamic 2-Dimensional Convolution module."""
import numpy
import torch
import torch.nn.functional as F
from torch import nn
MIN_VALUE = float(numpy.finfo(numpy.float32).min)
[docs]class DynamicConvolution2D(nn.Module):
"""Dynamic 2-Dimensional Convolution layer.
This implementation is based on
https://github.com/pytorch/fairseq/tree/master/fairseq
Args:
wshare (int): the number of kernel of convolution
n_feat (int): the number of features
dropout_rate (float): dropout_rate
kernel_size (int): kernel size (length)
use_kernel_mask (bool): Use causal mask or not for convolution kernel
use_bias (bool): Use bias term or not.
"""
def __init__(
self,
wshare,
n_feat,
dropout_rate,
kernel_size,
use_kernel_mask=False,
use_bias=False,
):
"""Construct Dynamic 2-Dimensional Convolution layer."""
super(DynamicConvolution2D, self).__init__()
assert n_feat % wshare == 0
self.wshare = wshare
self.use_kernel_mask = use_kernel_mask
self.dropout_rate = dropout_rate
self.kernel_size = kernel_size
self.padding_size = int(kernel_size / 2)
self.attn_t = None
self.attn_f = None
# linear -> GLU -- -> lightconv -> linear
# \ /
# Linear
self.linear1 = nn.Linear(n_feat, n_feat * 2)
self.linear2 = nn.Linear(n_feat * 2, n_feat)
self.linear_weight = nn.Linear(n_feat, self.wshare * 1 * kernel_size)
nn.init.xavier_uniform(self.linear_weight.weight)
self.linear_weight_f = nn.Linear(n_feat, kernel_size)
nn.init.xavier_uniform(self.linear_weight_f.weight)
self.act = nn.GLU()
# dynamic conv related
self.use_bias = use_bias
if self.use_bias:
self.bias = nn.Parameter(torch.Tensor(n_feat))
[docs] def forward(self, query, key, value, mask):
"""Forward of 'Dynamic 2-Dimensional Convolution'.
This function takes query, key and value but uses only query.
This is just for compatibility with self-attention layer (attention.py)
Args:
query (torch.Tensor): (batch, time1, d_model) input tensor
key (torch.Tensor): (batch, time2, d_model) NOT USED
value (torch.Tensor): (batch, time2, d_model) NOT USED
mask (torch.Tensor): (batch, time1, time2) mask
Return:
x (torch.Tensor): (batch, time1, d_model) output
"""
# linear -> GLU -- -> lightconv -> linear
# \ /
# Linear
x = query
B, T, C = x.size()
H = self.wshare
k = self.kernel_size
# first liner layer
x = self.linear1(x)
# GLU activation
x = self.act(x)
# convolution of frequency axis
weight_f = self.linear_weight_f(x).view(B * T, 1, k) # B x T x k
self.attn_f = weight_f.view(B, T, k).unsqueeze(1)
xf = F.conv1d(
x.view(1, B * T, C), weight_f, padding=self.padding_size, groups=B * T
)
xf = xf.view(B, T, C)
# get kernel of convolution
weight = self.linear_weight(x) # B x T x kH
weight = F.dropout(weight, self.dropout_rate, training=self.training)
weight = weight.view(B, T, H, k).transpose(1, 2).contiguous() # B x H x T x k
weight_new = torch.zeros(B * H * T * (T + k - 1), dtype=weight.dtype)
weight_new = weight_new.view(B, H, T, T + k - 1).fill_(float("-inf"))
weight_new = weight_new.to(x.device) # B x H x T x T+k-1
weight_new.as_strided(
(B, H, T, k), ((T + k - 1) * T * H, (T + k - 1) * T, T + k, 1)
).copy_(weight)
weight_new = weight_new.narrow(-1, int((k - 1) / 2), T) # B x H x T x T(k)
if self.use_kernel_mask:
kernel_mask = torch.tril(torch.ones(T, T, device=x.device)).unsqueeze(0)
weight_new = weight_new.masked_fill(kernel_mask == 0.0, float("-inf"))
weight_new = F.softmax(weight_new, dim=-1)
self.attn_t = weight_new
weight_new = weight_new.view(B * H, T, T)
# convolution
x = x.transpose(1, 2).contiguous() # B x C x T
x = x.view(B * H, int(C / H), T).transpose(1, 2)
x = torch.bmm(weight_new, x)
x = x.transpose(1, 2).contiguous().view(B, C, T)
if self.use_bias:
x = x + self.bias.view(1, -1, 1)
x = x.transpose(1, 2) # B x T x C
x = torch.cat((x, xf), -1) # B x T x Cx2
if mask is not None and not self.use_kernel_mask:
mask = mask.transpose(-1, -2)
x = x.masked_fill(mask == 0, 0.0)
# second linear layer
x = self.linear2(x)
return x