Source code for espnet.nets.pytorch_backend.transformer.attention

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Multi-Head Attention layer definition."""

import math

import torch
from torch import nn


[docs]class MultiHeadedAttention(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head, n_feat, dropout_rate): """Construct an MultiHeadedAttention object.""" super(MultiHeadedAttention, self).__init__() assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k = nn.Linear(n_feat, n_feat) self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.attn = None self.dropout = nn.Dropout(p=dropout_rate)
[docs] def forward_qkv(self, query, key, value): """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k). """ n_batch = query.size(0) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose(1, 2) # (batch, head, time1, d_k) k = k.transpose(1, 2) # (batch, head, time2, d_k) v = v.transpose(1, 2) # (batch, head, time2, d_k) return q, k, v
[docs] def forward_attention(self, value, scores, mask): """Compute attention context vector. Args: value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score (#batch, n_head, time1, time2). mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) if mask is not None: mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) min_value = torch.finfo(scores.dtype).min scores = scores.masked_fill(mask, min_value) self.attn = torch.softmax(scores, dim=-1).masked_fill( mask, 0.0 ) # (batch, head, time1, time2) else: self.attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) p_attn = self.dropout(self.attn) x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) x = ( x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) ) # (batch, time1, d_model) return self.linear_out(x) # (batch, time1, d_model)
[docs] def forward(self, query, key, value, mask): """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q, k, v = self.forward_qkv(query, key, value) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) return self.forward_attention(v, scores, mask)
[docs]class LegacyRelPositionMultiHeadedAttention(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding (old version). Details can be found in https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. zero_triu (bool): Whether to zero the upper triangular part of attention matrix. """ def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False): """Construct an RelPositionMultiHeadedAttention object.""" super().__init__(n_head, n_feat, dropout_rate) self.zero_triu = zero_triu # linear transformation for positional encoding self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v)
[docs] def rel_shift(self, x): """Compute relative positional encoding. Args: x (torch.Tensor): Input tensor (batch, head, time1, time2). Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x) if self.zero_triu: ones = torch.ones((x.size(2), x.size(3))) x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :] return x
[docs] def forward(self, query, key, value, pos_emb, mask): """Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). pos_emb (torch.Tensor): Positional embedding tensor (#batch, time1, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q, k, v = self.forward_qkv(query, key, value) q = q.transpose(1, 2) # (batch, time1, head, d_k) n_batch_pos = pos_emb.size(0) p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) p = p.transpose(1, 2) # (batch, head, time1, d_k) # (batch, head, time1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # compute matrix b and matrix d # (batch, head, time1, time1) matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k ) # (batch, head, time1, time2) return self.forward_attention(v, scores, mask)
[docs]class RelPositionMultiHeadedAttention(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding (new implementation). Details can be found in https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. zero_triu (bool): Whether to zero the upper triangular part of attention matrix. """ def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False): """Construct an RelPositionMultiHeadedAttention object.""" super().__init__(n_head, n_feat, dropout_rate) self.zero_triu = zero_triu # linear transformation for positional encoding self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v)
[docs] def rel_shift(self, x): """Compute relative positional encoding. Args: x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). time1 means the length of query vector. Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2)) x = x_padded[:, :, 1:].view_as(x)[ :, :, :, : x.size(-1) // 2 + 1 ] # only keep the positions from 0 to time2 if self.zero_triu: ones = torch.ones((x.size(2), x.size(3)), device=x.device) x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :] return x
[docs] def forward(self, query, key, value, pos_emb, mask): """Compute 'Scaled Dot Product Attention' with rel. positional encoding. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). pos_emb (torch.Tensor): Positional embedding tensor (#batch, 2*time1-1, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q, k, v = self.forward_qkv(query, key, value) q = q.transpose(1, 2) # (batch, time1, head, d_k) n_batch_pos = pos_emb.size(0) p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) p = p.transpose(1, 2) # (batch, head, 2*time1-1, d_k) # (batch, head, time1, d_k) q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) # (batch, head, time1, d_k) q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) # compute attention score # first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # (batch, head, time1, time2) matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) # compute matrix b and matrix d # (batch, head, time1, 2*time1-1) matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) matrix_bd = self.rel_shift(matrix_bd) scores = (matrix_ac + matrix_bd) / math.sqrt( self.d_k ) # (batch, head, time1, time2) return self.forward_attention(v, scores, mask)