Source code for espnet2.torch_utils.model_summary

import humanfriendly
import numpy as np
import torch


[docs]def get_human_readable_count(number: int) -> str: """Return human_readable_count Originated from: https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/core/memory.py Abbreviates an integer number with K, M, B, T for thousands, millions, billions and trillions, respectively. Examples: >>> get_human_readable_count(123) '123 ' >>> get_human_readable_count(1234) # (one thousand) '1 K' >>> get_human_readable_count(2e6) # (two million) '2 M' >>> get_human_readable_count(3e9) # (three billion) '3 B' >>> get_human_readable_count(4e12) # (four trillion) '4 T' >>> get_human_readable_count(5e15) # (more than trillion) '5,000 T' Args: number: a positive integer number Return: A string formatted according to the pattern described above. """ assert number >= 0 labels = [" ", "K", "M", "B", "T"] num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1) num_groups = int(np.ceil(num_digits / 3)) num_groups = min(num_groups, len(labels)) # don't abbreviate beyond trillions shift = -3 * (num_groups - 1) number = number * (10**shift) index = num_groups - 1 return f"{number:.2f} {labels[index]}"
[docs]def to_bytes(dtype) -> int: # torch.float16 -> 16 return int(str(dtype)[-2:]) // 8
[docs]def model_summary(model: torch.nn.Module) -> str: message = "Model structure:\n" message += str(model) tot_params = sum(p.numel() for p in model.parameters()) num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) percent_trainable = "{:.1f}".format(num_params * 100.0 / tot_params) tot_params = get_human_readable_count(tot_params) num_params = get_human_readable_count(num_params) message += "\n\nModel summary:\n" message += f" Class Name: {model.__class__.__name__}\n" message += f" Total Number of model parameters: {tot_params}\n" message += ( f" Number of trainable parameters: {num_params} ({percent_trainable}%)\n" ) num_bytes = humanfriendly.format_size( sum( p.numel() * to_bytes(p.dtype) for p in model.parameters() if p.requires_grad ) ) message += f" Size: {num_bytes}\n" dtype = next(iter(model.parameters())).dtype message += f" Type: {dtype}" return message