Source code for espnet2.torch_utils.load_pretrained_model

import logging
from typing import Any, Dict, Union

import torch
import torch.nn
import torch.optim


[docs]def filter_state_dict( dst_state: Dict[str, Union[float, torch.Tensor]], src_state: Dict[str, Union[float, torch.Tensor]], ): """Filter name, size mismatch instances between dicts. Args: dst_state: reference state dict for filtering src_state: target state dict for filtering """ match_state = {} for key, value in src_state.items(): if key in dst_state and (dst_state[key].size() == src_state[key].size()): match_state[key] = value else: if key not in dst_state: logging.warning( f"Filter out {key} from pretrained dict" + " because of name not found in target dict" ) else: logging.warning( f"Filter out {key} from pretrained dict" + " because of size mismatch" + f"({dst_state[key].size()}-{src_state[key].size()})" ) return match_state
[docs]def load_pretrained_model( init_param: str, model: torch.nn.Module, ignore_init_mismatch: bool, map_location: str = "cpu", ): """Load a model state and set it to the model. Args: init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys> Examples: >>> load_pretrained_model("somewhere/model.pth", model) >>> load_pretrained_model("somewhere/model.pth:decoder:decoder", model) >>> load_pretrained_model("somewhere/model.pth:decoder:decoder:", model) >>> load_pretrained_model( ... "somewhere/model.pth:decoder:decoder:decoder.embed", model ... ) >>> load_pretrained_model("somewhere/decoder.pth::decoder", model) """ sps = init_param.split(":", 4) if len(sps) == 4: path, src_key, dst_key, excludes = sps elif len(sps) == 3: path, src_key, dst_key = sps excludes = None elif len(sps) == 2: path, src_key = sps dst_key, excludes = None, None else: (path,) = sps src_key, dst_key, excludes = None, None, None if src_key == "": src_key = None if dst_key == "": dst_key = None if dst_key is None: obj = model else: def get_attr(obj: Any, key: str): """Get an nested attribute. >>> class A(torch.nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = torch.nn.Linear(10, 10) >>> a = A() >>> assert A.linear.weight is get_attr(A, 'linear.weight') """ if key.strip() == "": return obj for k in key.split("."): obj = getattr(obj, k) return obj obj = get_attr(model, dst_key) src_state = torch.load(path, map_location=map_location) if excludes is not None: for e in excludes.split(","): src_state = {k: v for k, v in src_state.items() if not k.startswith(e)} if src_key is not None: src_state = { k[len(src_key) + 1 :]: v for k, v in src_state.items() if k.startswith(src_key) } dst_state = obj.state_dict() if ignore_init_mismatch: src_state = filter_state_dict(dst_state, src_state) dst_state.update(src_state) obj.load_state_dict(dst_state)