from pathlib import Path
from typing import Dict, Iterable, Union
from typeguard import check_argument_types
from espnet2.text.abs_tokenizer import AbsTokenizer
from espnet2.text.char_tokenizer import CharTokenizer
from espnet2.text.hugging_face_tokenizer import HuggingFaceTokenizer
from espnet2.text.phoneme_tokenizer import PhonemeTokenizer
from espnet2.text.sentencepiece_tokenizer import SentencepiecesTokenizer
from espnet2.text.whisper_tokenizer import OpenAIWhisperTokenizer
from espnet2.text.word_tokenizer import WordTokenizer
[docs]def build_tokenizer(
token_type: str,
bpemodel: Union[Path, str, Iterable[str]] = None,
non_linguistic_symbols: Union[Path, str, Iterable[str]] = None,
remove_non_linguistic_symbols: bool = False,
space_symbol: str = "<space>",
delimiter: str = None,
g2p_type: str = None,
nonsplit_symbol: Iterable[str] = None,
# tokenization encode (text2token) args, e.g. BPE dropout, only applied in training
encode_kwargs: Dict = None,
) -> AbsTokenizer:
"""A helper function to instantiate Tokenizer"""
assert check_argument_types()
if token_type == "bpe":
if bpemodel is None:
raise ValueError('bpemodel is required if token_type = "bpe"')
if remove_non_linguistic_symbols:
raise RuntimeError(
"remove_non_linguistic_symbols is not implemented for token_type=bpe"
)
if encode_kwargs is None:
encode_kwargs = dict()
return SentencepiecesTokenizer(bpemodel, encode_kwargs)
if token_type == "hugging_face":
if bpemodel is None:
raise ValueError('bpemodel is required if token_type = "hugging_face"')
if remove_non_linguistic_symbols:
raise RuntimeError(
"remove_non_linguistic_symbols is not "
+ "implemented for token_type=hugging_face"
)
return HuggingFaceTokenizer(bpemodel)
elif token_type == "word":
if remove_non_linguistic_symbols and non_linguistic_symbols is not None:
return WordTokenizer(
delimiter=delimiter,
non_linguistic_symbols=non_linguistic_symbols,
remove_non_linguistic_symbols=True,
)
else:
return WordTokenizer(delimiter=delimiter)
elif token_type == "char":
return CharTokenizer(
non_linguistic_symbols=non_linguistic_symbols,
space_symbol=space_symbol,
remove_non_linguistic_symbols=remove_non_linguistic_symbols,
nonsplit_symbols=nonsplit_symbol,
)
elif token_type == "phn":
return PhonemeTokenizer(
g2p_type=g2p_type,
non_linguistic_symbols=non_linguistic_symbols,
space_symbol=space_symbol,
remove_non_linguistic_symbols=remove_non_linguistic_symbols,
)
elif "whisper" in token_type:
return OpenAIWhisperTokenizer(bpemodel)
else:
raise ValueError(
f"token_mode must be one of bpe, word, char or phn: " f"{token_type}"
)