"""Step (with Warm up) learning rate scheduler module."""
from typing import Union
import torch
from torch.optim.lr_scheduler import _LRScheduler
from typeguard import check_argument_types
from espnet2.schedulers.abs_scheduler import AbsBatchStepScheduler
[docs]class WarmupStepLR(_LRScheduler, AbsBatchStepScheduler):
"""The WarmupStepLR scheduler.
This scheduler is the combination of WarmupLR and StepLR:
WarmupLR:
lr = optimizer.lr * warmup_step ** 0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
WarmupStepLR:
if step <= warmup_step:
lr = optimizer.lr * warmup_step ** 0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
else:
lr = optimizer.lr * (gamma ** (epoch//step_size))
Note that the maximum lr equals to optimizer.lr in this scheduler.
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
# for WarmupLR
warmup_steps: Union[int, float] = 25000,
# for StepLR
steps_per_epoch: int = 10000,
step_size: int = 1,
gamma: float = 0.1,
last_epoch: int = -1,
):
assert check_argument_types()
self.warmup_steps = warmup_steps
self.step_num = 0
self.epoch_num = 0
# NOTE: This number should be adjusted accordingly
# once batch_size/ngpu/num_nodes is changed.
# To get the exact number of iterations per epoch, refer to
# https://github.com/espnet/espnet/discussions/4404
self.steps_per_epoch = steps_per_epoch
self.warmup_epoch = warmup_steps // steps_per_epoch
self.lr_scale = warmup_steps**-1
# after warmup_steps, decrease lr by `gamma` every `step_size` epochs
self.step_size = step_size
self.gamma = gamma
# __init__() must be invoked before setting field
# because step() is also invoked in __init__()
super().__init__(optimizer, last_epoch)
def __repr__(self):
return (
f"{self.__class__.__name__}(warmup_steps={self.warmup_steps}, "
f"steps_per_epoch={self.steps_per_epoch},"
f" step_size={self.step_size}, gamma={self.gamma})"
)
[docs] def get_lr(self):
self.step_num += 1
if self.step_num % self.steps_per_epoch == 0:
self.epoch_num += 1
if self.step_num <= self.warmup_steps:
return [lr * self.lr_scale * self.step_num for lr in self.base_lrs]
else:
return [
lr
* self.gamma ** ((self.epoch_num - self.warmup_epoch) // self.step_size)
for lr in self.base_lrs
]