Source code for espnet2.optimizers.optim_groups

# noqa: E501 This code is modified from: https://github.com/HazyResearch/state-spaces/blob/main/src/utils/optim_groups.py

import torch.nn as nn


[docs]def add_optimizer_hooks( model, bias_weight_decay=False, normalization_weight_decay=False, ): """Set zero weight decay for some params Set weight_decay=0.0 for parameters in model.no_weight_decay, for parameters with attribute _no_weight_decay==True, for bias parameters if bias_weight_decay==False, for normalization parameters if normalization_weight_decay==False See: https://discuss.pytorch.org/t/weight-decay-only-for-weights-of-nn-linear-and-nn-conv/114348 # noqa """ # Separate out all parameters to those that will and won't experience regularizing # weight decay blacklist_weight_modules = (nn.Embedding,) if not normalization_weight_decay: blacklist_weight_modules += ( nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, # Not compatible with Pytorch 1.8.1 # nn.LazyBatchNorm1d, nn.LazyBatchNorm2d, nn.LazyBatchNorm3d, nn.GroupNorm, nn.SyncBatchNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm, nn.LocalResponseNorm, ) for mn, m in model.named_modules(): for pn, p in m.named_parameters(): if ( (not bias_weight_decay and pn.endswith("bias")) or getattr(p, "_no_weight_decay", False) or isinstance(m, blacklist_weight_modules) ): setattr(p, "_optim", {"weight_decay": 0.0})
[docs]def configure_optimizer(model, optim_class, optim_conf, weight_decay_conf): # Set zero weight decay for some params add_optimizer_hooks( model, **weight_decay_conf, ) # Normal parameters all_params = list(model.parameters()) params = [p for p in all_params if not hasattr(p, "_optim")] # Instantiate base optimizer optimizer = optim_class(params, **optim_conf) # Add parameters with special hyperparameters hps = [getattr(p, "_optim") for p in all_params if hasattr(p, "_optim")] hps = [ dict(s) for s in sorted(list(dict.fromkeys(frozenset(hp.items()) for hp in hps))) ] # Unique dicts for hp in hps: params = [p for p in all_params if getattr(p, "_optim", None) == hp] optimizer.add_param_group({"params": params, **optim_conf, **hp}) return optimizer