from typing import Dict, Optional, Tuple
import torch
import torch.nn.functional as F
from typeguard import check_argument_types
from espnet2.lm.abs_model import AbsLM
from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.train.abs_espnet_model import AbsESPnetModel
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
[docs]class ESPnetLanguageModel(AbsESPnetModel):
def __init__(self, lm: AbsLM, vocab_size: int, ignore_id: int = 0):
assert check_argument_types()
super().__init__()
self.lm = lm
self.sos = vocab_size - 1
self.eos = vocab_size - 1
# ignore_id may be assumed as 0, shared with CTC-blank symbol for ASR.
self.ignore_id = ignore_id
[docs] def nll(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
max_length: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute negative log likelihood(nll)
Normally, this function is called in batchify_nll.
Args:
text: (Batch, Length)
text_lengths: (Batch,)
max_lengths: int
"""
batch_size = text.size(0)
# For data parallel
if max_length is None:
text = text[:, : text_lengths.max()]
else:
text = text[:, :max_length]
# 1. Create a sentence pair like '<sos> w1 w2 w3' and 'w1 w2 w3 <eos>'
# text: (Batch, Length) -> x, y: (Batch, Length + 1)
x = F.pad(text, [1, 0], "constant", self.eos)
t = F.pad(text, [0, 1], "constant", self.ignore_id)
for i, l in enumerate(text_lengths):
t[i, l] = self.sos
x_lengths = text_lengths + 1
# 2. Forward Language model
# x: (Batch, Length) -> y: (Batch, Length, NVocab)
y, _ = self.lm(x, None)
# 3. Calc negative log likelihood
# nll: (BxL,)
nll = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
# nll: (BxL,) -> (BxL,)
if max_length is None:
nll.masked_fill_(make_pad_mask(x_lengths).to(nll.device).view(-1), 0.0)
else:
nll.masked_fill_(
make_pad_mask(x_lengths, maxlen=max_length + 1).to(nll.device).view(-1),
0.0,
)
# nll: (BxL,) -> (B, L)
nll = nll.view(batch_size, -1)
return nll, x_lengths
[docs] def batchify_nll(
self, text: torch.Tensor, text_lengths: torch.Tensor, batch_size: int = 100
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute negative log likelihood(nll) from transformer language model
To avoid OOM, this fuction seperate the input into batches.
Then call nll for each batch and combine and return results.
Args:
text: (Batch, Length)
text_lengths: (Batch,)
batch_size: int, samples each batch contain when computing nll,
you may change this to avoid OOM or increase
"""
total_num = text.size(0)
if total_num <= batch_size:
nll, x_lengths = self.nll(text, text_lengths)
else:
nlls = []
x_lengths = []
max_length = text_lengths.max()
start_idx = 0
while True:
end_idx = min(start_idx + batch_size, total_num)
batch_text = text[start_idx:end_idx, :]
batch_text_lengths = text_lengths[start_idx:end_idx]
# batch_nll: [B * T]
batch_nll, batch_x_lengths = self.nll(
batch_text, batch_text_lengths, max_length=max_length
)
nlls.append(batch_nll)
x_lengths.append(batch_x_lengths)
start_idx = end_idx
if start_idx == total_num:
break
nll = torch.cat(nlls)
x_lengths = torch.cat(x_lengths)
assert nll.size(0) == total_num
assert x_lengths.size(0) == total_num
return nll, x_lengths
[docs] def forward(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
nll, y_lengths = self.nll(text, text_lengths)
ntokens = y_lengths.sum()
loss = nll.sum() / ntokens
stats = dict(loss=loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
return loss, stats, weight
[docs] def collect_feats(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Dict[str, torch.Tensor]:
return {}