Source code for espnet2.layers.stft

from typing import Optional, Tuple, Union

import librosa
import numpy as np
import torch
from packaging.version import parse as V
from torch_complex.tensor import ComplexTensor
from typeguard import check_argument_types

from espnet2.enh.layers.complex_utils import is_complex
from espnet2.layers.inversible_interface import InversibleInterface
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask

is_torch_1_10_plus = V(torch.__version__) >= V("1.10.0")


is_torch_1_9_plus = V(torch.__version__) >= V("1.9.0")


is_torch_1_7_plus = V(torch.__version__) >= V("1.7")


[docs]class Stft(torch.nn.Module, InversibleInterface): def __init__( self, n_fft: int = 512, win_length: int = None, hop_length: int = 128, window: Optional[str] = "hann", center: bool = True, normalized: bool = False, onesided: bool = True, ): assert check_argument_types() super().__init__() self.n_fft = n_fft if win_length is None: self.win_length = n_fft else: self.win_length = win_length self.hop_length = hop_length self.center = center self.normalized = normalized self.onesided = onesided if window is not None and not hasattr(torch, f"{window}_window"): raise ValueError(f"{window} window is not implemented") self.window = window
[docs] def extra_repr(self): return ( f"n_fft={self.n_fft}, " f"win_length={self.win_length}, " f"hop_length={self.hop_length}, " f"center={self.center}, " f"normalized={self.normalized}, " f"onesided={self.onesided}" )
[docs] def forward( self, input: torch.Tensor, ilens: torch.Tensor = None ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """STFT forward function. Args: input: (Batch, Nsamples) or (Batch, Nsample, Channels) ilens: (Batch) Returns: output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2) """ bs = input.size(0) if input.dim() == 3: multi_channel = True # input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample) input = input.transpose(1, 2).reshape(-1, input.size(1)) else: multi_channel = False # NOTE(kamo): # The default behaviour of torch.stft is compatible with librosa.stft # about padding and scaling. # Note that it's different from scipy.signal.stft # output: (Batch, Freq, Frames, 2=real_imag) # or (Batch, Channel, Freq, Frames, 2=real_imag) if self.window is not None: window_func = getattr(torch, f"{self.window}_window") window = window_func( self.win_length, dtype=input.dtype, device=input.device ) else: window = None # For the compatibility of ARM devices, which do not support # torch.stft() due to the lack of MKL (on older pytorch versions), # there is an alternative replacement implementation with librosa. # Note: pytorch >= 1.10.0 now has native support for FFT and STFT # on all cpu targets including ARM. if is_torch_1_10_plus or input.is_cuda or torch.backends.mkl.is_available(): stft_kwargs = dict( n_fft=self.n_fft, win_length=self.win_length, hop_length=self.hop_length, center=self.center, window=window, normalized=self.normalized, onesided=self.onesided, ) if is_torch_1_7_plus: stft_kwargs["return_complex"] = False output = torch.stft(input, **stft_kwargs) else: if self.training: raise NotImplementedError( "stft is implemented with librosa on this device, which does not " "support the training mode." ) # use stft_kwargs to flexibly control different PyTorch versions' kwargs # note: librosa does not support a win_length that is < n_ftt # but the window can be manually padded (see below). stft_kwargs = dict( n_fft=self.n_fft, win_length=self.n_fft, hop_length=self.hop_length, center=self.center, window=window, pad_mode="reflect", ) if window is not None: # pad the given window to n_fft n_pad_left = (self.n_fft - window.shape[0]) // 2 n_pad_right = self.n_fft - window.shape[0] - n_pad_left stft_kwargs["window"] = torch.cat( [torch.zeros(n_pad_left), window, torch.zeros(n_pad_right)], 0 ).numpy() else: win_length = ( self.win_length if self.win_length is not None else self.n_fft ) stft_kwargs["window"] = torch.ones(win_length) output = [] # iterate over istances in a batch for i, instance in enumerate(input): stft = librosa.stft(input[i].numpy(), **stft_kwargs) output.append(torch.tensor(np.stack([stft.real, stft.imag], -1))) output = torch.stack(output, 0) if not self.onesided: len_conj = self.n_fft - output.shape[1] conj = output[:, 1 : 1 + len_conj].flip(1) conj[:, :, :, -1].data *= -1 output = torch.cat([output, conj], 1) if self.normalized: output = output * (stft_kwargs["window"].shape[0] ** (-0.5)) # output: (Batch, Freq, Frames, 2=real_imag) # -> (Batch, Frames, Freq, 2=real_imag) output = output.transpose(1, 2) if multi_channel: # output: (Batch * Channel, Frames, Freq, 2=real_imag) # -> (Batch, Frame, Channel, Freq, 2=real_imag) output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose( 1, 2 ) if ilens is not None: if self.center: pad = self.n_fft // 2 ilens = ilens + 2 * pad if is_torch_1_9_plus: olens = ( torch.div( ilens - self.n_fft, self.hop_length, rounding_mode="trunc" ) + 1 ) else: olens = (ilens - self.n_fft) // self.hop_length + 1 output.masked_fill_(make_pad_mask(olens, output, 1), 0.0) else: olens = None return output, olens
[docs] def inverse( self, input: Union[torch.Tensor, ComplexTensor], ilens: torch.Tensor = None ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Inverse STFT. Args: input: Tensor(batch, T, F, 2) or ComplexTensor(batch, T, F) ilens: (batch,) Returns: wavs: (batch, samples) ilens: (batch,) """ if V(torch.__version__) >= V("1.6.0"): istft = torch.functional.istft else: try: import torchaudio except ImportError: raise ImportError( "Please install torchaudio>=0.3.0 or use torch>=1.6.0" ) if not hasattr(torchaudio.functional, "istft"): raise ImportError( "Please install torchaudio>=0.3.0 or use torch>=1.6.0" ) istft = torchaudio.functional.istft if self.window is not None: window_func = getattr(torch, f"{self.window}_window") if is_complex(input): datatype = input.real.dtype else: datatype = input.dtype window = window_func(self.win_length, dtype=datatype, device=input.device) else: window = None if is_complex(input): input = torch.stack([input.real, input.imag], dim=-1) elif input.shape[-1] != 2: raise TypeError("Invalid input type") input = input.transpose(1, 2) wavs = istft( input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=window, center=self.center, normalized=self.normalized, onesided=self.onesided, length=ilens.max() if ilens is not None else ilens, ) return wavs, ilens