#!/usr/bin/env python3
# 2020, Technische Universität München; Ludwig Kürzinger
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Sinc convolutions."""
import math
from typing import Union
import torch
from typeguard import check_argument_types
[docs]class LogCompression(torch.nn.Module):
"""Log Compression Activation.
Activation function `log(abs(x) + 1)`.
"""
def __init__(self):
"""Initialize."""
super().__init__()
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward.
Applies the Log Compression function elementwise on tensor x.
"""
return torch.log(torch.abs(x) + 1)
[docs]class SincConv(torch.nn.Module):
"""Sinc Convolution.
This module performs a convolution using Sinc filters in time domain as kernel.
Sinc filters function as band passes in spectral domain.
The filtering is done as a convolution in time domain, and no transformation
to spectral domain is necessary.
This implementation of the Sinc convolution is heavily inspired
by Ravanelli et al. https://github.com/mravanelli/SincNet,
and adapted for the ESpnet toolkit.
Combine Sinc convolutions with a log compression activation function, as in:
https://arxiv.org/abs/2010.07597
Notes:
Currently, the same filters are applied to all input channels.
The windowing function is applied on the kernel to obtained a smoother filter,
and not on the input values, which is different to traditional ASR.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
window_func: str = "hamming",
scale_type: str = "mel",
fs: Union[int, float] = 16000,
):
"""Initialize Sinc convolutions.
Args:
in_channels: Number of input channels.
out_channels: Number of output channels.
kernel_size: Sinc filter kernel size (needs to be an odd number).
stride: See torch.nn.functional.conv1d.
padding: See torch.nn.functional.conv1d.
dilation: See torch.nn.functional.conv1d.
window_func: Window function on the filter, one of ["hamming", "none"].
fs (str, int, float): Sample rate of the input data
"""
assert check_argument_types()
super().__init__()
window_funcs = {
"none": self.none_window,
"hamming": self.hamming_window,
}
if window_func not in window_funcs:
raise NotImplementedError(
f"Window function has to be one of {list(window_funcs.keys())}",
)
self.window_func = window_funcs[window_func]
scale_choices = {
"mel": MelScale,
"bark": BarkScale,
}
if scale_type not in scale_choices:
raise NotImplementedError(
f"Scale has to be one of {list(scale_choices.keys())}",
)
self.scale = scale_choices[scale_type]
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.dilation = dilation
self.stride = stride
self.fs = float(fs)
if self.kernel_size % 2 == 0:
raise ValueError("SincConv: Kernel size must be odd.")
self.f = None
N = self.kernel_size // 2
self._x = 2 * math.pi * torch.linspace(1, N, N)
self._window = self.window_func(torch.linspace(1, N, N))
# init may get overwritten by E2E network,
# but is still required to calculate output dim
self.init_filters()
[docs] @staticmethod
def sinc(x: torch.Tensor) -> torch.Tensor:
"""Sinc function."""
x2 = x + 1e-6
return torch.sin(x2) / x2
[docs] @staticmethod
def none_window(x: torch.Tensor) -> torch.Tensor:
"""Identity-like windowing function."""
return torch.ones_like(x)
[docs] @staticmethod
def hamming_window(x: torch.Tensor) -> torch.Tensor:
"""Hamming Windowing function."""
L = 2 * x.size(0) + 1
x = x.flip(0)
return 0.54 - 0.46 * torch.cos(2.0 * math.pi * x / L)
[docs] def init_filters(self):
"""Initialize filters with filterbank values."""
f = self.scale.bank(self.out_channels, self.fs)
f = torch.div(f, self.fs)
self.f = torch.nn.Parameter(f, requires_grad=True)
def _create_filters(self, device: str):
"""Calculate coefficients.
This function (re-)calculates the filter convolutions coefficients.
"""
f_mins = torch.abs(self.f[:, 0])
f_maxs = torch.abs(self.f[:, 0]) + torch.abs(self.f[:, 1] - self.f[:, 0])
self._x = self._x.to(device)
self._window = self._window.to(device)
f_mins_x = torch.matmul(f_mins.view(-1, 1), self._x.view(1, -1))
f_maxs_x = torch.matmul(f_maxs.view(-1, 1), self._x.view(1, -1))
kernel = (torch.sin(f_maxs_x) - torch.sin(f_mins_x)) / (0.5 * self._x)
kernel = kernel * self._window
kernel_left = kernel.flip(1)
kernel_center = (2 * f_maxs - 2 * f_mins).unsqueeze(1)
filters = torch.cat([kernel_left, kernel_center, kernel], dim=1)
filters = filters.view(filters.size(0), 1, filters.size(1))
self.sinc_filters = filters
[docs] def forward(self, xs: torch.Tensor) -> torch.Tensor:
"""Sinc convolution forward function.
Args:
xs: Batch in form of torch.Tensor (B, C_in, D_in).
Returns:
xs: Batch in form of torch.Tensor (B, C_out, D_out).
"""
self._create_filters(xs.device)
xs = torch.nn.functional.conv1d(
xs,
self.sinc_filters,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.in_channels,
)
return xs
[docs] def get_odim(self, idim: int) -> int:
"""Obtain the output dimension of the filter."""
D_out = idim + 2 * self.padding - self.dilation * (self.kernel_size - 1) - 1
D_out = (D_out // self.stride) + 1
return D_out
[docs]class MelScale:
"""Mel frequency scale."""
[docs] @staticmethod
def convert(f):
"""Convert Hz to mel."""
return 1125.0 * torch.log(torch.div(f, 700.0) + 1.0)
[docs] @staticmethod
def invert(x):
"""Convert mel to Hz."""
return 700.0 * (torch.exp(torch.div(x, 1125.0)) - 1.0)
[docs] @classmethod
def bank(cls, channels: int, fs: float) -> torch.Tensor:
"""Obtain initialization values for the mel scale.
Args:
channels: Number of channels.
fs: Sample rate.
Returns:
torch.Tensor: Filter start frequencíes.
torch.Tensor: Filter stop frequencies.
"""
assert check_argument_types()
# min and max bandpass edge frequencies
min_frequency = torch.tensor(30.0)
max_frequency = torch.tensor(fs * 0.5)
frequencies = torch.linspace(
cls.convert(min_frequency), cls.convert(max_frequency), channels + 2
)
frequencies = cls.invert(frequencies)
f1, f2 = frequencies[:-2], frequencies[2:]
return torch.stack([f1, f2], dim=1)
[docs]class BarkScale:
"""Bark frequency scale.
Has wider bandwidths at lower frequencies, see:
Critical bandwidth: BARK
Zwicker and Terhardt, 1980
"""
[docs] @staticmethod
def convert(f):
"""Convert Hz to Bark."""
b = torch.div(f, 1000.0)
b = torch.pow(b, 2.0) * 1.4
b = torch.pow(b + 1.0, 0.69)
return b * 75.0 + 25.0
[docs] @staticmethod
def invert(x):
"""Convert Bark to Hz."""
f = torch.div(x - 25.0, 75.0)
f = torch.pow(f, (1.0 / 0.69))
f = torch.div(f - 1.0, 1.4)
f = torch.pow(f, 0.5)
return f * 1000.0
[docs] @classmethod
def bank(cls, channels: int, fs: float) -> torch.Tensor:
"""Obtain initialization values for the Bark scale.
Args:
channels: Number of channels.
fs: Sample rate.
Returns:
torch.Tensor: Filter start frequencíes.
torch.Tensor: Filter stop frequencíes.
"""
assert check_argument_types()
# min and max BARK center frequencies by approximation
min_center_frequency = torch.tensor(70.0)
max_center_frequency = torch.tensor(fs * 0.45)
center_frequencies = torch.linspace(
cls.convert(min_center_frequency),
cls.convert(max_center_frequency),
channels,
)
center_frequencies = cls.invert(center_frequencies)
f1 = center_frequencies - torch.div(cls.convert(center_frequencies), 2)
f2 = center_frequencies + torch.div(cls.convert(center_frequencies), 2)
return torch.stack([f1, f2], dim=1)