Source code for espnet2.layers.label_aggregation

from typing import Optional, Tuple

import torch
from typeguard import check_argument_types

from espnet.nets.pytorch_backend.nets_utils import make_pad_mask


[docs]class LabelAggregate(torch.nn.Module): def __init__( self, win_length: int = 512, hop_length: int = 128, center: bool = True, ): assert check_argument_types() super().__init__() self.win_length = win_length self.hop_length = hop_length self.center = center
[docs] def extra_repr(self): return ( f"win_length={self.win_length}, " f"hop_length={self.hop_length}, " f"center={self.center}, " )
[docs] def forward( self, input: torch.Tensor, ilens: torch.Tensor = None ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """LabelAggregate forward function. Args: input: (Batch, Nsamples, Label_dim) ilens: (Batch) Returns: output: (Batch, Frames, Label_dim) """ bs = input.size(0) max_length = input.size(1) label_dim = input.size(2) # NOTE(jiatong): # The default behaviour of label aggregation is compatible with # torch.stft about framing and padding. # Step1: center padding if self.center: pad = self.win_length // 2 max_length = max_length + 2 * pad input = torch.nn.functional.pad(input, (0, 0, pad, pad), "constant", 0) input[:, :pad, :] = input[:, pad : (2 * pad), :] input[:, (max_length - pad) : max_length, :] = input[ :, (max_length - 2 * pad) : (max_length - pad), : ] nframe = (max_length - self.win_length) // self.hop_length + 1 # Step2: framing output = input.as_strided( (bs, nframe, self.win_length, label_dim), (max_length * label_dim, self.hop_length * label_dim, label_dim, 1), ) # Step3: aggregate label output = torch.gt(output.sum(dim=2, keepdim=False), self.win_length // 2) output = output.float() # Step4: process lengths if ilens is not None: if self.center: pad = self.win_length // 2 ilens = ilens + 2 * pad olens = (ilens - self.win_length) // self.hop_length + 1 output.masked_fill_(make_pad_mask(olens, output, 1), 0.0) else: olens = None return output, olens