from pathlib import Path
from typing import Tuple, Union
import numpy as np
import torch
from typeguard import check_argument_types
from espnet2.layers.abs_normalize import AbsNormalize
from espnet2.layers.inversible_interface import InversibleInterface
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
[docs]class GlobalMVN(AbsNormalize, InversibleInterface):
"""Apply global mean and variance normalization
TODO(kamo): Make this class portable somehow
Args:
stats_file: npy file
norm_means: Apply mean normalization
norm_vars: Apply var normalization
eps:
"""
def __init__(
self,
stats_file: Union[Path, str],
norm_means: bool = True,
norm_vars: bool = True,
eps: float = 1.0e-20,
):
assert check_argument_types()
super().__init__()
self.norm_means = norm_means
self.norm_vars = norm_vars
self.eps = eps
stats_file = Path(stats_file)
self.stats_file = stats_file
stats = np.load(stats_file)
if isinstance(stats, np.ndarray):
# Kaldi like stats
count = stats[0].flatten()[-1]
mean = stats[0, :-1] / count
var = stats[1, :-1] / count - mean * mean
else:
# New style: Npz file
count = stats["count"]
sum_v = stats["sum"]
sum_square_v = stats["sum_square"]
mean = sum_v / count
var = sum_square_v / count - mean * mean
std = np.sqrt(np.maximum(var, eps))
if isinstance(mean, np.ndarray):
mean = torch.from_numpy(mean)
else:
mean = torch.tensor(mean).float()
if isinstance(std, np.ndarray):
std = torch.from_numpy(std)
else:
std = torch.tensor(std).float()
self.register_buffer("mean", mean)
self.register_buffer("std", std)
[docs] def forward(
self, x: torch.Tensor, ilens: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward function
Args:
x: (B, L, ...)
ilens: (B,)
"""
if ilens is None:
ilens = x.new_full([x.size(0)], x.size(1))
norm_means = self.norm_means
norm_vars = self.norm_vars
self.mean = self.mean.to(x.device, x.dtype)
self.std = self.std.to(x.device, x.dtype)
mask = make_pad_mask(ilens, x, 1)
# feat: (B, T, D)
if norm_means:
if x.requires_grad:
x = x - self.mean
else:
x -= self.mean
if x.requires_grad:
x = x.masked_fill(mask, 0.0)
else:
x.masked_fill_(mask, 0.0)
if norm_vars:
x /= self.std
return x, ilens
[docs] def inverse(
self, x: torch.Tensor, ilens: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
if ilens is None:
ilens = x.new_full([x.size(0)], x.size(1))
norm_means = self.norm_means
norm_vars = self.norm_vars
self.mean = self.mean.to(x.device, x.dtype)
self.std = self.std.to(x.device, x.dtype)
mask = make_pad_mask(ilens, x, 1)
if x.requires_grad:
x = x.masked_fill(mask, 0.0)
else:
x.masked_fill_(mask, 0.0)
if norm_vars:
x *= self.std
# feat: (B, T, D)
if norm_means:
x += self.mean
x.masked_fill_(make_pad_mask(ilens, x, 1), 0.0)
return x, ilens