# Copyright 2021 Tomoki Hayashi
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""VITS module for GAN-TTS task."""
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Any, Dict, Optional
import torch
from typeguard import check_argument_types
from espnet2.gan_tts.abs_gan_tts import AbsGANTTS
from espnet2.gan_tts.hifigan import (
HiFiGANMultiPeriodDiscriminator,
HiFiGANMultiScaleDiscriminator,
HiFiGANMultiScaleMultiPeriodDiscriminator,
HiFiGANPeriodDiscriminator,
HiFiGANScaleDiscriminator,
)
from espnet2.gan_tts.hifigan.loss import (
DiscriminatorAdversarialLoss,
FeatureMatchLoss,
GeneratorAdversarialLoss,
MelSpectrogramLoss,
)
from espnet2.gan_tts.utils import get_segments
from espnet2.gan_tts.vits.generator import VITSGenerator
from espnet2.gan_tts.vits.loss import KLDivergenceLoss
from espnet2.torch_utils.device_funcs import force_gatherable
AVAILABLE_GENERATERS = {
"vits_generator": VITSGenerator,
}
AVAILABLE_DISCRIMINATORS = {
"hifigan_period_discriminator": HiFiGANPeriodDiscriminator,
"hifigan_scale_discriminator": HiFiGANScaleDiscriminator,
"hifigan_multi_period_discriminator": HiFiGANMultiPeriodDiscriminator,
"hifigan_multi_scale_discriminator": HiFiGANMultiScaleDiscriminator,
"hifigan_multi_scale_multi_period_discriminator": HiFiGANMultiScaleMultiPeriodDiscriminator, # NOQA
}
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True): # NOQA
yield
[docs]class VITS(AbsGANTTS):
"""VITS module (generator + discriminator).
This is a module of VITS described in `Conditional Variational Autoencoder
with Adversarial Learning for End-to-End Text-to-Speech`_.
.. _`Conditional Variational Autoencoder with Adversarial Learning for End-to-End
Text-to-Speech`: https://arxiv.org/abs/2006.04558
"""
def __init__(
self,
# generator related
idim: int,
odim: int,
sampling_rate: int = 22050,
generator_type: str = "vits_generator",
generator_params: Dict[str, Any] = {
"hidden_channels": 192,
"spks": None,
"langs": None,
"spk_embed_dim": None,
"global_channels": -1,
"segment_size": 32,
"text_encoder_attention_heads": 2,
"text_encoder_ffn_expand": 4,
"text_encoder_blocks": 6,
"text_encoder_positionwise_layer_type": "conv1d",
"text_encoder_positionwise_conv_kernel_size": 1,
"text_encoder_positional_encoding_layer_type": "rel_pos",
"text_encoder_self_attention_layer_type": "rel_selfattn",
"text_encoder_activation_type": "swish",
"text_encoder_normalize_before": True,
"text_encoder_dropout_rate": 0.1,
"text_encoder_positional_dropout_rate": 0.0,
"text_encoder_attention_dropout_rate": 0.0,
"text_encoder_conformer_kernel_size": 7,
"use_macaron_style_in_text_encoder": True,
"use_conformer_conv_in_text_encoder": True,
"decoder_kernel_size": 7,
"decoder_channels": 512,
"decoder_upsample_scales": [8, 8, 2, 2],
"decoder_upsample_kernel_sizes": [16, 16, 4, 4],
"decoder_resblock_kernel_sizes": [3, 7, 11],
"decoder_resblock_dilations": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"use_weight_norm_in_decoder": True,
"posterior_encoder_kernel_size": 5,
"posterior_encoder_layers": 16,
"posterior_encoder_stacks": 1,
"posterior_encoder_base_dilation": 1,
"posterior_encoder_dropout_rate": 0.0,
"use_weight_norm_in_posterior_encoder": True,
"flow_flows": 4,
"flow_kernel_size": 5,
"flow_base_dilation": 1,
"flow_layers": 4,
"flow_dropout_rate": 0.0,
"use_weight_norm_in_flow": True,
"use_only_mean_in_flow": True,
"stochastic_duration_predictor_kernel_size": 3,
"stochastic_duration_predictor_dropout_rate": 0.5,
"stochastic_duration_predictor_flows": 4,
"stochastic_duration_predictor_dds_conv_layers": 3,
},
# discriminator related
discriminator_type: str = "hifigan_multi_scale_multi_period_discriminator",
discriminator_params: Dict[str, Any] = {
"scales": 1,
"scale_downsample_pooling": "AvgPool1d",
"scale_downsample_pooling_params": {
"kernel_size": 4,
"stride": 2,
"padding": 2,
},
"scale_discriminator_params": {
"in_channels": 1,
"out_channels": 1,
"kernel_sizes": [15, 41, 5, 3],
"channels": 128,
"max_downsample_channels": 1024,
"max_groups": 16,
"bias": True,
"downsample_scales": [2, 2, 4, 4, 1],
"nonlinear_activation": "LeakyReLU",
"nonlinear_activation_params": {"negative_slope": 0.1},
"use_weight_norm": True,
"use_spectral_norm": False,
},
"follow_official_norm": False,
"periods": [2, 3, 5, 7, 11],
"period_discriminator_params": {
"in_channels": 1,
"out_channels": 1,
"kernel_sizes": [5, 3],
"channels": 32,
"downsample_scales": [3, 3, 3, 3, 1],
"max_downsample_channels": 1024,
"bias": True,
"nonlinear_activation": "LeakyReLU",
"nonlinear_activation_params": {"negative_slope": 0.1},
"use_weight_norm": True,
"use_spectral_norm": False,
},
},
# loss related
generator_adv_loss_params: Dict[str, Any] = {
"average_by_discriminators": False,
"loss_type": "mse",
},
discriminator_adv_loss_params: Dict[str, Any] = {
"average_by_discriminators": False,
"loss_type": "mse",
},
feat_match_loss_params: Dict[str, Any] = {
"average_by_discriminators": False,
"average_by_layers": False,
"include_final_outputs": True,
},
mel_loss_params: Dict[str, Any] = {
"fs": 22050,
"n_fft": 1024,
"hop_length": 256,
"win_length": None,
"window": "hann",
"n_mels": 80,
"fmin": 0,
"fmax": None,
"log_base": None,
},
lambda_adv: float = 1.0,
lambda_mel: float = 45.0,
lambda_feat_match: float = 2.0,
lambda_dur: float = 1.0,
lambda_kl: float = 1.0,
cache_generator_outputs: bool = True,
):
"""Initialize VITS module.
Args:
idim (int): Input vocabrary size.
odim (int): Acoustic feature dimension. The actual output channels will
be 1 since VITS is the end-to-end text-to-wave model but for the
compatibility odim is used to indicate the acoustic feature dimension.
sampling_rate (int): Sampling rate, not used for the training but it will
be referred in saving waveform during the inference.
generator_type (str): Generator type.
generator_params (Dict[str, Any]): Parameter dict for generator.
discriminator_type (str): Discriminator type.
discriminator_params (Dict[str, Any]): Parameter dict for discriminator.
generator_adv_loss_params (Dict[str, Any]): Parameter dict for generator
adversarial loss.
discriminator_adv_loss_params (Dict[str, Any]): Parameter dict for
discriminator adversarial loss.
feat_match_loss_params (Dict[str, Any]): Parameter dict for feat match loss.
mel_loss_params (Dict[str, Any]): Parameter dict for mel loss.
lambda_adv (float): Loss scaling coefficient for adversarial loss.
lambda_mel (float): Loss scaling coefficient for mel spectrogram loss.
lambda_feat_match (float): Loss scaling coefficient for feat match loss.
lambda_dur (float): Loss scaling coefficient for duration loss.
lambda_kl (float): Loss scaling coefficient for KL divergence loss.
cache_generator_outputs (bool): Whether to cache generator outputs.
"""
assert check_argument_types()
super().__init__()
# define modules
generator_class = AVAILABLE_GENERATERS[generator_type]
if generator_type == "vits_generator":
# NOTE(kan-bayashi): Update parameters for the compatibility.
# The idim and odim is automatically decided from input data,
# where idim represents #vocabularies and odim represents
# the input acoustic feature dimension.
generator_params.update(vocabs=idim, aux_channels=odim)
self.generator = generator_class(
**generator_params,
)
discriminator_class = AVAILABLE_DISCRIMINATORS[discriminator_type]
self.discriminator = discriminator_class(
**discriminator_params,
)
self.generator_adv_loss = GeneratorAdversarialLoss(
**generator_adv_loss_params,
)
self.discriminator_adv_loss = DiscriminatorAdversarialLoss(
**discriminator_adv_loss_params,
)
self.feat_match_loss = FeatureMatchLoss(
**feat_match_loss_params,
)
self.mel_loss = MelSpectrogramLoss(
**mel_loss_params,
)
self.kl_loss = KLDivergenceLoss()
# coefficients
self.lambda_adv = lambda_adv
self.lambda_mel = lambda_mel
self.lambda_kl = lambda_kl
self.lambda_feat_match = lambda_feat_match
self.lambda_dur = lambda_dur
# cache
self.cache_generator_outputs = cache_generator_outputs
self._cache = None
# store sampling rate for saving wav file
# (not used for the training)
self.fs = sampling_rate
# store parameters for test compatibility
self.spks = self.generator.spks
self.langs = self.generator.langs
self.spk_embed_dim = self.generator.spk_embed_dim
@property
def require_raw_speech(self):
"""Return whether or not speech is required."""
return True
@property
def require_vocoder(self):
"""Return whether or not vocoder is required."""
return False
[docs] def forward(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
feats: torch.Tensor,
feats_lengths: torch.Tensor,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
sids: Optional[torch.Tensor] = None,
spembs: Optional[torch.Tensor] = None,
lids: Optional[torch.Tensor] = None,
forward_generator: bool = True,
) -> Dict[str, Any]:
"""Perform generator forward.
Args:
text (Tensor): Text index tensor (B, T_text).
text_lengths (Tensor): Text length tensor (B,).
feats (Tensor): Feature tensor (B, T_feats, aux_channels).
feats_lengths (Tensor): Feature length tensor (B,).
speech (Tensor): Speech waveform tensor (B, T_wav).
speech_lengths (Tensor): Speech length tensor (B,).
sids (Optional[Tensor]): Speaker index tensor (B,) or (B, 1).
spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim).
lids (Optional[Tensor]): Language index tensor (B,) or (B, 1).
forward_generator (bool): Whether to forward generator.
Returns:
Dict[str, Any]:
- loss (Tensor): Loss scalar tensor.
- stats (Dict[str, float]): Statistics to be monitored.
- weight (Tensor): Weight tensor to summarize losses.
- optim_idx (int): Optimizer index (0 for G and 1 for D).
"""
if forward_generator:
return self._forward_generator(
text=text,
text_lengths=text_lengths,
feats=feats,
feats_lengths=feats_lengths,
speech=speech,
speech_lengths=speech_lengths,
sids=sids,
spembs=spembs,
lids=lids,
)
else:
return self._forward_discrminator(
text=text,
text_lengths=text_lengths,
feats=feats,
feats_lengths=feats_lengths,
speech=speech,
speech_lengths=speech_lengths,
sids=sids,
spembs=spembs,
lids=lids,
)
def _forward_generator(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
feats: torch.Tensor,
feats_lengths: torch.Tensor,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
sids: Optional[torch.Tensor] = None,
spembs: Optional[torch.Tensor] = None,
lids: Optional[torch.Tensor] = None,
) -> Dict[str, Any]:
"""Perform generator forward.
Args:
text (Tensor): Text index tensor (B, T_text).
text_lengths (Tensor): Text length tensor (B,).
feats (Tensor): Feature tensor (B, T_feats, aux_channels).
feats_lengths (Tensor): Feature length tensor (B,).
speech (Tensor): Speech waveform tensor (B, T_wav).
speech_lengths (Tensor): Speech length tensor (B,).
sids (Optional[Tensor]): Speaker index tensor (B,) or (B, 1).
spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim).
lids (Optional[Tensor]): Language index tensor (B,) or (B, 1).
Returns:
Dict[str, Any]:
* loss (Tensor): Loss scalar tensor.
* stats (Dict[str, float]): Statistics to be monitored.
* weight (Tensor): Weight tensor to summarize losses.
* optim_idx (int): Optimizer index (0 for G and 1 for D).
"""
# setup
batch_size = text.size(0)
feats = feats.transpose(1, 2)
speech = speech.unsqueeze(1)
# calculate generator outputs
reuse_cache = True
if not self.cache_generator_outputs or self._cache is None:
reuse_cache = False
outs = self.generator(
text=text,
text_lengths=text_lengths,
feats=feats,
feats_lengths=feats_lengths,
sids=sids,
spembs=spembs,
lids=lids,
)
else:
outs = self._cache
# store cache
if self.training and self.cache_generator_outputs and not reuse_cache:
self._cache = outs
# parse outputs
speech_hat_, dur_nll, _, start_idxs, _, z_mask, outs_ = outs
_, z_p, m_p, logs_p, _, logs_q = outs_
speech_ = get_segments(
x=speech,
start_idxs=start_idxs * self.generator.upsample_factor,
segment_size=self.generator.segment_size * self.generator.upsample_factor,
)
# calculate discriminator outputs
p_hat = self.discriminator(speech_hat_)
with torch.no_grad():
# do not store discriminator gradient in generator turn
p = self.discriminator(speech_)
# calculate losses
with autocast(enabled=False):
mel_loss = self.mel_loss(speech_hat_, speech_)
kl_loss = self.kl_loss(z_p, logs_q, m_p, logs_p, z_mask)
dur_loss = torch.sum(dur_nll.float())
adv_loss = self.generator_adv_loss(p_hat)
feat_match_loss = self.feat_match_loss(p_hat, p)
mel_loss = mel_loss * self.lambda_mel
kl_loss = kl_loss * self.lambda_kl
dur_loss = dur_loss * self.lambda_dur
adv_loss = adv_loss * self.lambda_adv
feat_match_loss = feat_match_loss * self.lambda_feat_match
loss = mel_loss + kl_loss + dur_loss + adv_loss + feat_match_loss
stats = dict(
generator_loss=loss.item(),
generator_mel_loss=mel_loss.item(),
generator_kl_loss=kl_loss.item(),
generator_dur_loss=dur_loss.item(),
generator_adv_loss=adv_loss.item(),
generator_feat_match_loss=feat_match_loss.item(),
)
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
# reset cache
if reuse_cache or not self.training:
self._cache = None
return {
"loss": loss,
"stats": stats,
"weight": weight,
"optim_idx": 0, # needed for trainer
}
def _forward_discrminator(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
feats: torch.Tensor,
feats_lengths: torch.Tensor,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
sids: Optional[torch.Tensor] = None,
spembs: Optional[torch.Tensor] = None,
lids: Optional[torch.Tensor] = None,
) -> Dict[str, Any]:
"""Perform discriminator forward.
Args:
text (Tensor): Text index tensor (B, T_text).
text_lengths (Tensor): Text length tensor (B,).
feats (Tensor): Feature tensor (B, T_feats, aux_channels).
feats_lengths (Tensor): Feature length tensor (B,).
speech (Tensor): Speech waveform tensor (B, T_wav).
speech_lengths (Tensor): Speech length tensor (B,).
sids (Optional[Tensor]): Speaker index tensor (B,) or (B, 1).
spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim).
lids (Optional[Tensor]): Language index tensor (B,) or (B, 1).
Returns:
Dict[str, Any]:
* loss (Tensor): Loss scalar tensor.
* stats (Dict[str, float]): Statistics to be monitored.
* weight (Tensor): Weight tensor to summarize losses.
* optim_idx (int): Optimizer index (0 for G and 1 for D).
"""
# setup
batch_size = text.size(0)
feats = feats.transpose(1, 2)
speech = speech.unsqueeze(1)
# calculate generator outputs
reuse_cache = True
if not self.cache_generator_outputs or self._cache is None:
reuse_cache = False
outs = self.generator(
text=text,
text_lengths=text_lengths,
feats=feats,
feats_lengths=feats_lengths,
sids=sids,
spembs=spembs,
lids=lids,
)
else:
outs = self._cache
# store cache
if self.cache_generator_outputs and not reuse_cache:
self._cache = outs
# parse outputs
speech_hat_, _, _, start_idxs, *_ = outs
speech_ = get_segments(
x=speech,
start_idxs=start_idxs * self.generator.upsample_factor,
segment_size=self.generator.segment_size * self.generator.upsample_factor,
)
# calculate discriminator outputs
p_hat = self.discriminator(speech_hat_.detach())
p = self.discriminator(speech_)
# calculate losses
with autocast(enabled=False):
real_loss, fake_loss = self.discriminator_adv_loss(p_hat, p)
loss = real_loss + fake_loss
stats = dict(
discriminator_loss=loss.item(),
discriminator_real_loss=real_loss.item(),
discriminator_fake_loss=fake_loss.item(),
)
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
# reset cache
if reuse_cache or not self.training:
self._cache = None
return {
"loss": loss,
"stats": stats,
"weight": weight,
"optim_idx": 1, # needed for trainer
}
[docs] def inference(
self,
text: torch.Tensor,
feats: Optional[torch.Tensor] = None,
sids: Optional[torch.Tensor] = None,
spembs: Optional[torch.Tensor] = None,
lids: Optional[torch.Tensor] = None,
durations: Optional[torch.Tensor] = None,
noise_scale: float = 0.667,
noise_scale_dur: float = 0.8,
alpha: float = 1.0,
max_len: Optional[int] = None,
use_teacher_forcing: bool = False,
) -> Dict[str, torch.Tensor]:
"""Run inference.
Args:
text (Tensor): Input text index tensor (T_text,).
feats (Tensor): Feature tensor (T_feats, aux_channels).
sids (Tensor): Speaker index tensor (1,).
spembs (Optional[Tensor]): Speaker embedding tensor (spk_embed_dim,).
lids (Tensor): Language index tensor (1,).
durations (Tensor): Ground-truth duration tensor (T_text,).
noise_scale (float): Noise scale value for flow.
noise_scale_dur (float): Noise scale value for duration predictor.
alpha (float): Alpha parameter to control the speed of generated speech.
max_len (Optional[int]): Maximum length.
use_teacher_forcing (bool): Whether to use teacher forcing.
Returns:
Dict[str, Tensor]:
* wav (Tensor): Generated waveform tensor (T_wav,).
* att_w (Tensor): Monotonic attention weight tensor (T_feats, T_text).
* duration (Tensor): Predicted duration tensor (T_text,).
"""
# setup
text = text[None]
text_lengths = torch.tensor(
[text.size(1)],
dtype=torch.long,
device=text.device,
)
if sids is not None:
sids = sids.view(1)
if lids is not None:
lids = lids.view(1)
if durations is not None:
durations = durations.view(1, 1, -1)
# inference
if use_teacher_forcing:
assert feats is not None
feats = feats[None].transpose(1, 2)
feats_lengths = torch.tensor(
[feats.size(2)],
dtype=torch.long,
device=feats.device,
)
wav, att_w, dur = self.generator.inference(
text=text,
text_lengths=text_lengths,
feats=feats,
feats_lengths=feats_lengths,
sids=sids,
spembs=spembs,
lids=lids,
max_len=max_len,
use_teacher_forcing=use_teacher_forcing,
)
else:
wav, att_w, dur = self.generator.inference(
text=text,
text_lengths=text_lengths,
sids=sids,
spembs=spembs,
lids=lids,
dur=durations,
noise_scale=noise_scale,
noise_scale_dur=noise_scale_dur,
alpha=alpha,
max_len=max_len,
)
return dict(wav=wav.view(-1), att_w=att_w[0], duration=dur[0])