Source code for espnet2.gan_tts.jets.jets

# Copyright 2022 Dan Lim
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""JETS module for GAN-TTS task."""

from typing import Any, Dict, Optional

import torch
from typeguard import check_argument_types

from espnet2.gan_tts.abs_gan_tts import AbsGANTTS
from espnet2.gan_tts.hifigan import (
    HiFiGANMultiPeriodDiscriminator,
    HiFiGANMultiScaleDiscriminator,
    HiFiGANMultiScaleMultiPeriodDiscriminator,
    HiFiGANPeriodDiscriminator,
    HiFiGANScaleDiscriminator,
)
from espnet2.gan_tts.hifigan.loss import (
    DiscriminatorAdversarialLoss,
    FeatureMatchLoss,
    GeneratorAdversarialLoss,
    MelSpectrogramLoss,
)
from espnet2.gan_tts.jets.generator import JETSGenerator
from espnet2.gan_tts.jets.loss import ForwardSumLoss, VarianceLoss
from espnet2.gan_tts.utils import get_segments
from espnet2.torch_utils.device_funcs import force_gatherable

AVAILABLE_GENERATERS = {
    "jets_generator": JETSGenerator,
}
AVAILABLE_DISCRIMINATORS = {
    "hifigan_period_discriminator": HiFiGANPeriodDiscriminator,
    "hifigan_scale_discriminator": HiFiGANScaleDiscriminator,
    "hifigan_multi_period_discriminator": HiFiGANMultiPeriodDiscriminator,
    "hifigan_multi_scale_discriminator": HiFiGANMultiScaleDiscriminator,
    "hifigan_multi_scale_multi_period_discriminator": HiFiGANMultiScaleMultiPeriodDiscriminator,  # NOQA
}


[docs]class JETS(AbsGANTTS): """JETS module (generator + discriminator). This is a module of JETS described in `JETS: Jointly Training FastSpeech2 and HiFi-GAN for End to End Text to Speech'_. .. _`JETS: Jointly Training FastSpeech2 and HiFi-GAN for End to End Text to Speech` : https://arxiv.org/abs/2203.16852 """ def __init__( self, # generator related idim: int, odim: int, sampling_rate: int = 22050, generator_type: str = "jets_generator", generator_params: Dict[str, Any] = { "adim": 256, "aheads": 2, "elayers": 4, "eunits": 1024, "dlayers": 4, "dunits": 1024, "positionwise_layer_type": "conv1d", "positionwise_conv_kernel_size": 1, "use_scaled_pos_enc": True, "use_batch_norm": True, "encoder_normalize_before": True, "decoder_normalize_before": True, "encoder_concat_after": False, "decoder_concat_after": False, "reduction_factor": 1, "encoder_type": "transformer", "decoder_type": "transformer", "transformer_enc_dropout_rate": 0.1, "transformer_enc_positional_dropout_rate": 0.1, "transformer_enc_attn_dropout_rate": 0.1, "transformer_dec_dropout_rate": 0.1, "transformer_dec_positional_dropout_rate": 0.1, "transformer_dec_attn_dropout_rate": 0.1, "conformer_rel_pos_type": "latest", "conformer_pos_enc_layer_type": "rel_pos", "conformer_self_attn_layer_type": "rel_selfattn", "conformer_activation_type": "swish", "use_macaron_style_in_conformer": True, "use_cnn_in_conformer": True, "zero_triu": False, "conformer_enc_kernel_size": 7, "conformer_dec_kernel_size": 31, "duration_predictor_layers": 2, "duration_predictor_chans": 384, "duration_predictor_kernel_size": 3, "duration_predictor_dropout_rate": 0.1, "energy_predictor_layers": 2, "energy_predictor_chans": 384, "energy_predictor_kernel_size": 3, "energy_predictor_dropout": 0.5, "energy_embed_kernel_size": 1, "energy_embed_dropout": 0.5, "stop_gradient_from_energy_predictor": False, "pitch_predictor_layers": 5, "pitch_predictor_chans": 384, "pitch_predictor_kernel_size": 5, "pitch_predictor_dropout": 0.5, "pitch_embed_kernel_size": 1, "pitch_embed_dropout": 0.5, "stop_gradient_from_pitch_predictor": True, "generator_out_channels": 1, "generator_channels": 512, "generator_global_channels": -1, "generator_kernel_size": 7, "generator_upsample_scales": [8, 8, 2, 2], "generator_upsample_kernel_sizes": [16, 16, 4, 4], "generator_resblock_kernel_sizes": [3, 7, 11], "generator_resblock_dilations": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], "generator_use_additional_convs": True, "generator_bias": True, "generator_nonlinear_activation": "LeakyReLU", "generator_nonlinear_activation_params": {"negative_slope": 0.1}, "generator_use_weight_norm": True, "segment_size": 64, "spks": -1, "langs": -1, "spk_embed_dim": None, "spk_embed_integration_type": "add", "use_gst": False, "gst_tokens": 10, "gst_heads": 4, "gst_conv_layers": 6, "gst_conv_chans_list": [32, 32, 64, 64, 128, 128], "gst_conv_kernel_size": 3, "gst_conv_stride": 2, "gst_gru_layers": 1, "gst_gru_units": 128, "init_type": "xavier_uniform", "init_enc_alpha": 1.0, "init_dec_alpha": 1.0, "use_masking": False, "use_weighted_masking": False, }, # discriminator related discriminator_type: str = "hifigan_multi_scale_multi_period_discriminator", discriminator_params: Dict[str, Any] = { "scales": 1, "scale_downsample_pooling": "AvgPool1d", "scale_downsample_pooling_params": { "kernel_size": 4, "stride": 2, "padding": 2, }, "scale_discriminator_params": { "in_channels": 1, "out_channels": 1, "kernel_sizes": [15, 41, 5, 3], "channels": 128, "max_downsample_channels": 1024, "max_groups": 16, "bias": True, "downsample_scales": [2, 2, 4, 4, 1], "nonlinear_activation": "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, "use_weight_norm": True, "use_spectral_norm": False, }, "follow_official_norm": False, "periods": [2, 3, 5, 7, 11], "period_discriminator_params": { "in_channels": 1, "out_channels": 1, "kernel_sizes": [5, 3], "channels": 32, "downsample_scales": [3, 3, 3, 3, 1], "max_downsample_channels": 1024, "bias": True, "nonlinear_activation": "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, "use_weight_norm": True, "use_spectral_norm": False, }, }, # loss related generator_adv_loss_params: Dict[str, Any] = { "average_by_discriminators": False, "loss_type": "mse", }, discriminator_adv_loss_params: Dict[str, Any] = { "average_by_discriminators": False, "loss_type": "mse", }, feat_match_loss_params: Dict[str, Any] = { "average_by_discriminators": False, "average_by_layers": False, "include_final_outputs": True, }, mel_loss_params: Dict[str, Any] = { "fs": 22050, "n_fft": 1024, "hop_length": 256, "win_length": None, "window": "hann", "n_mels": 80, "fmin": 0, "fmax": None, "log_base": None, }, lambda_adv: float = 1.0, lambda_mel: float = 45.0, lambda_feat_match: float = 2.0, lambda_var: float = 1.0, lambda_align: float = 2.0, cache_generator_outputs: bool = True, ): """Initialize JETS module. Args: idim (int): Input vocabrary size. odim (int): Acoustic feature dimension. The actual output channels will be 1 since JETS is the end-to-end text-to-wave model but for the compatibility odim is used to indicate the acoustic feature dimension. sampling_rate (int): Sampling rate, not used for the training but it will be referred in saving waveform during the inference. generator_type (str): Generator type. generator_params (Dict[str, Any]): Parameter dict for generator. discriminator_type (str): Discriminator type. discriminator_params (Dict[str, Any]): Parameter dict for discriminator. generator_adv_loss_params (Dict[str, Any]): Parameter dict for generator adversarial loss. discriminator_adv_loss_params (Dict[str, Any]): Parameter dict for discriminator adversarial loss. feat_match_loss_params (Dict[str, Any]): Parameter dict for feat match loss. mel_loss_params (Dict[str, Any]): Parameter dict for mel loss. lambda_adv (float): Loss scaling coefficient for adversarial loss. lambda_mel (float): Loss scaling coefficient for mel spectrogram loss. lambda_feat_match (float): Loss scaling coefficient for feat match loss. lambda_var (float): Loss scaling coefficient for variance loss. lambda_align (float): Loss scaling coefficient for alignment loss. cache_generator_outputs (bool): Whether to cache generator outputs. """ assert check_argument_types() super().__init__() # define modules generator_class = AVAILABLE_GENERATERS[generator_type] generator_params.update(idim=idim, odim=odim) self.generator = generator_class( **generator_params, ) discriminator_class = AVAILABLE_DISCRIMINATORS[discriminator_type] self.discriminator = discriminator_class( **discriminator_params, ) self.generator_adv_loss = GeneratorAdversarialLoss( **generator_adv_loss_params, ) self.discriminator_adv_loss = DiscriminatorAdversarialLoss( **discriminator_adv_loss_params, ) self.feat_match_loss = FeatureMatchLoss( **feat_match_loss_params, ) self.mel_loss = MelSpectrogramLoss( **mel_loss_params, ) self.var_loss = VarianceLoss() self.forwardsum_loss = ForwardSumLoss() # coefficients self.lambda_adv = lambda_adv self.lambda_mel = lambda_mel self.lambda_feat_match = lambda_feat_match self.lambda_var = lambda_var self.lambda_align = lambda_align # cache self.cache_generator_outputs = cache_generator_outputs self._cache = None # store sampling rate for saving wav file # (not used for the training) self.fs = sampling_rate # store parameters for test compatibility self.spks = self.generator.spks self.langs = self.generator.langs self.spk_embed_dim = self.generator.spk_embed_dim self.use_gst = getattr(self.generator, "use_gst", False) @property def require_raw_speech(self): """Return whether or not speech is required.""" return True @property def require_vocoder(self): """Return whether or not vocoder is required.""" return False
[docs] def forward( self, text: torch.Tensor, text_lengths: torch.Tensor, feats: torch.Tensor, feats_lengths: torch.Tensor, speech: torch.Tensor, speech_lengths: torch.Tensor, sids: Optional[torch.Tensor] = None, spembs: Optional[torch.Tensor] = None, lids: Optional[torch.Tensor] = None, forward_generator: bool = True, **kwargs, ) -> Dict[str, Any]: """Perform generator forward. Args: text (Tensor): Text index tensor (B, T_text). text_lengths (Tensor): Text length tensor (B,). feats (Tensor): Feature tensor (B, T_feats, aux_channels). feats_lengths (Tensor): Feature length tensor (B,). speech (Tensor): Speech waveform tensor (B, T_wav). speech_lengths (Tensor): Speech length tensor (B,). sids (Optional[Tensor]): Speaker index tensor (B,) or (B, 1). spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim). lids (Optional[Tensor]): Language index tensor (B,) or (B, 1). forward_generator (bool): Whether to forward generator. Returns: Dict[str, Any]: - loss (Tensor): Loss scalar tensor. - stats (Dict[str, float]): Statistics to be monitored. - weight (Tensor): Weight tensor to summarize losses. - optim_idx (int): Optimizer index (0 for G and 1 for D). """ if forward_generator: return self._forward_generator( text=text, text_lengths=text_lengths, feats=feats, feats_lengths=feats_lengths, speech=speech, speech_lengths=speech_lengths, sids=sids, spembs=spembs, lids=lids, **kwargs, ) else: return self._forward_discrminator( text=text, text_lengths=text_lengths, feats=feats, feats_lengths=feats_lengths, speech=speech, speech_lengths=speech_lengths, sids=sids, spembs=spembs, lids=lids, **kwargs, )
def _forward_generator( self, text: torch.Tensor, text_lengths: torch.Tensor, feats: torch.Tensor, feats_lengths: torch.Tensor, speech: torch.Tensor, speech_lengths: torch.Tensor, sids: Optional[torch.Tensor] = None, spembs: Optional[torch.Tensor] = None, lids: Optional[torch.Tensor] = None, **kwargs, ) -> Dict[str, Any]: """Perform generator forward. Args: text (Tensor): Text index tensor (B, T_text). text_lengths (Tensor): Text length tensor (B,). feats (Tensor): Feature tensor (B, T_feats, aux_channels). feats_lengths (Tensor): Feature length tensor (B,). speech (Tensor): Speech waveform tensor (B, T_wav). speech_lengths (Tensor): Speech length tensor (B,). sids (Optional[Tensor]): Speaker index tensor (B,) or (B, 1). spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim). lids (Optional[Tensor]): Language index tensor (B,) or (B, 1). Returns: Dict[str, Any]: * loss (Tensor): Loss scalar tensor. * stats (Dict[str, float]): Statistics to be monitored. * weight (Tensor): Weight tensor to summarize losses. * optim_idx (int): Optimizer index (0 for G and 1 for D). """ # setup batch_size = text.size(0) speech = speech.unsqueeze(1) # calculate generator outputs reuse_cache = True if not self.cache_generator_outputs or self._cache is None: reuse_cache = False outs = self.generator( text=text, text_lengths=text_lengths, feats=feats, feats_lengths=feats_lengths, sids=sids, spembs=spembs, lids=lids, **kwargs, ) else: outs = self._cache # store cache if self.training and self.cache_generator_outputs and not reuse_cache: self._cache = outs # parse outputs ( speech_hat_, bin_loss, log_p_attn, start_idxs, d_outs, ds, p_outs, ps, e_outs, es, ) = outs speech_ = get_segments( x=speech, start_idxs=start_idxs * self.generator.upsample_factor, segment_size=self.generator.segment_size * self.generator.upsample_factor, ) # calculate discriminator outputs p_hat = self.discriminator(speech_hat_) with torch.no_grad(): # do not store discriminator gradient in generator turn p = self.discriminator(speech_) # calculate losses mel_loss = self.mel_loss(speech_hat_, speech_) adv_loss = self.generator_adv_loss(p_hat) feat_match_loss = self.feat_match_loss(p_hat, p) dur_loss, pitch_loss, energy_loss = self.var_loss( d_outs, ds, p_outs, ps, e_outs, es, text_lengths ) forwardsum_loss = self.forwardsum_loss(log_p_attn, text_lengths, feats_lengths) mel_loss = mel_loss * self.lambda_mel adv_loss = adv_loss * self.lambda_adv feat_match_loss = feat_match_loss * self.lambda_feat_match g_loss = mel_loss + adv_loss + feat_match_loss var_loss = (dur_loss + pitch_loss + energy_loss) * self.lambda_var align_loss = (forwardsum_loss + bin_loss) * self.lambda_align loss = g_loss + var_loss + align_loss stats = dict( generator_loss=loss.item(), generator_g_loss=g_loss.item(), generator_var_loss=var_loss.item(), generator_align_loss=align_loss.item(), generator_g_mel_loss=mel_loss.item(), generator_g_adv_loss=adv_loss.item(), generator_g_feat_match_loss=feat_match_loss.item(), generator_var_dur_loss=dur_loss.item(), generator_var_pitch_loss=pitch_loss.item(), generator_var_energy_loss=energy_loss.item(), generator_align_forwardsum_loss=forwardsum_loss.item(), generator_align_bin_loss=bin_loss.item(), ) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) # reset cache if reuse_cache or not self.training: self._cache = None return { "loss": loss, "stats": stats, "weight": weight, "optim_idx": 0, # needed for trainer } def _forward_discrminator( self, text: torch.Tensor, text_lengths: torch.Tensor, feats: torch.Tensor, feats_lengths: torch.Tensor, speech: torch.Tensor, speech_lengths: torch.Tensor, sids: Optional[torch.Tensor] = None, spembs: Optional[torch.Tensor] = None, lids: Optional[torch.Tensor] = None, **kwargs, ) -> Dict[str, Any]: """Perform discriminator forward. Args: text (Tensor): Text index tensor (B, T_text). text_lengths (Tensor): Text length tensor (B,). feats (Tensor): Feature tensor (B, T_feats, aux_channels). feats_lengths (Tensor): Feature length tensor (B,). speech (Tensor): Speech waveform tensor (B, T_wav). speech_lengths (Tensor): Speech length tensor (B,). sids (Optional[Tensor]): Speaker index tensor (B,) or (B, 1). spembs (Optional[Tensor]): Speaker embedding tensor (B, spk_embed_dim). lids (Optional[Tensor]): Language index tensor (B,) or (B, 1). Returns: Dict[str, Any]: * loss (Tensor): Loss scalar tensor. * stats (Dict[str, float]): Statistics to be monitored. * weight (Tensor): Weight tensor to summarize losses. * optim_idx (int): Optimizer index (0 for G and 1 for D). """ # setup batch_size = text.size(0) speech = speech.unsqueeze(1) # calculate generator outputs reuse_cache = True if not self.cache_generator_outputs or self._cache is None: reuse_cache = False outs = self.generator( text=text, text_lengths=text_lengths, feats=feats, feats_lengths=feats_lengths, sids=sids, spembs=spembs, lids=lids, **kwargs, ) else: outs = self._cache # store cache if self.cache_generator_outputs and not reuse_cache: self._cache = outs # parse outputs speech_hat_, _, _, start_idxs, *_ = outs speech_ = get_segments( x=speech, start_idxs=start_idxs * self.generator.upsample_factor, segment_size=self.generator.segment_size * self.generator.upsample_factor, ) # calculate discriminator outputs p_hat = self.discriminator(speech_hat_.detach()) p = self.discriminator(speech_) # calculate losses real_loss, fake_loss = self.discriminator_adv_loss(p_hat, p) loss = real_loss + fake_loss stats = dict( discriminator_loss=loss.item(), discriminator_real_loss=real_loss.item(), discriminator_fake_loss=fake_loss.item(), ) loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) # reset cache if reuse_cache or not self.training: self._cache = None return { "loss": loss, "stats": stats, "weight": weight, "optim_idx": 1, # needed for trainer }
[docs] def inference( self, text: torch.Tensor, feats: Optional[torch.Tensor] = None, pitch: Optional[torch.Tensor] = None, energy: Optional[torch.Tensor] = None, use_teacher_forcing: bool = False, **kwargs, ) -> Dict[str, torch.Tensor]: """Run inference. Args: text (Tensor): Input text index tensor (T_text,). feats (Tensor): Feature tensor (T_feats, aux_channels). pitch (Tensor): Pitch tensor (T_feats, 1). energy (Tensor): Energy tensor (T_feats, 1). use_teacher_forcing (bool): Whether to use teacher forcing. Returns: Dict[str, Tensor]: * wav (Tensor): Generated waveform tensor (T_wav,). * duration (Tensor): Predicted duration tensor (T_text,). """ # setup text = text[None] text_lengths = torch.tensor( [text.size(1)], dtype=torch.long, device=text.device, ) if "spembs" in kwargs: kwargs["spembs"] = kwargs["spembs"][None] if self.use_gst and "speech" in kwargs: # NOTE(kan-bayashi): Workaround for the use of GST kwargs.pop("speech") # inference if use_teacher_forcing: assert feats is not None feats = feats[None] feats_lengths = torch.tensor( [feats.size(1)], dtype=torch.long, device=feats.device, ) assert pitch is not None pitch = pitch[None] assert energy is not None energy = energy[None] wav, dur = self.generator.inference( text=text, text_lengths=text_lengths, feats=feats, feats_lengths=feats_lengths, pitch=pitch, energy=energy, use_teacher_forcing=use_teacher_forcing, **kwargs, ) else: wav, dur = self.generator.inference( text=text, text_lengths=text_lengths, feats=feats[None] if self.use_gst else None, **kwargs, ) return dict(wav=wav.view(-1), duration=dur[0])