from espnet2.enh.loss.criterions.abs_loss import AbsEnhLoss
from espnet2.enh.loss.wrappers.abs_wrapper import AbsLossWrapper
[docs]class DPCLSolver(AbsLossWrapper):
def __init__(self, criterion: AbsEnhLoss, weight=1.0):
super().__init__()
self.criterion = criterion
self.weight = weight
[docs] def forward(self, ref, inf, others={}):
"""A naive DPCL solver
Args:
ref (List[torch.Tensor]): [(batch, ...), ...] x n_spk
inf (List[torch.Tensor]): [(batch, ...), ...]
others (List): other data included in this solver
e.g. "tf_embedding" learned embedding of all T-F bins (B, T * F, D)
Returns:
loss: (torch.Tensor): minimum loss with the best permutation
stats: (dict), for collecting training status
others: reserved
"""
assert "tf_embedding" in others
loss = self.criterion(ref, others["tf_embedding"]).mean()
stats = dict()
stats[self.criterion.name] = loss.detach()
return loss.mean(), stats, {}