Source code for espnet2.enh.layers.mask_estimator

from typing import Tuple, Union

import numpy as np
import torch
from packaging.version import parse as V
from torch.nn import functional as F
from torch_complex.tensor import ComplexTensor

from espnet2.enh.layers.complex_utils import is_complex
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.rnn.encoders import RNN, RNNP

is_torch_1_9_plus = V(torch.__version__) >= V("1.9.0")


[docs]class MaskEstimator(torch.nn.Module): def __init__( self, type, idim, layers, units, projs, dropout, nmask=1, nonlinear="sigmoid" ): super().__init__() subsample = np.ones(layers + 1, dtype=np.int64) typ = type.lstrip("vgg").rstrip("p") if type[-1] == "p": self.brnn = RNNP(idim, layers, units, projs, subsample, dropout, typ=typ) else: self.brnn = RNN(idim, layers, units, projs, dropout, typ=typ) self.type = type self.nmask = nmask self.linears = torch.nn.ModuleList( [torch.nn.Linear(projs, idim) for _ in range(nmask)] ) if nonlinear not in ("sigmoid", "relu", "tanh", "crelu"): raise ValueError("Not supporting nonlinear={}".format(nonlinear)) self.nonlinear = nonlinear
[docs] def forward( self, xs: Union[torch.Tensor, ComplexTensor], ilens: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, ...], torch.LongTensor]: """Mask estimator forward function. Args: xs: (B, F, C, T) ilens: (B,) Returns: hs (torch.Tensor): The hidden vector (B, F, C, T) masks: A tuple of the masks. (B, F, C, T) ilens: (B,) """ assert xs.size(0) == ilens.size(0), (xs.size(0), ilens.size(0)) _, _, C, input_length = xs.size() # (B, F, C, T) -> (B, C, T, F) xs = xs.permute(0, 2, 3, 1) # Calculate amplitude: (B, C, T, F) -> (B, C, T, F) if is_complex(xs): xs = (xs.real**2 + xs.imag**2) ** 0.5 # xs: (B, C, T, F) -> xs: (B * C, T, F) xs = xs.contiguous().view(-1, xs.size(-2), xs.size(-1)) # ilens: (B,) -> ilens_: (B * C) ilens_ = ilens[:, None].expand(-1, C).contiguous().view(-1) # xs: (B * C, T, F) -> xs: (B * C, T, D) xs, _, _ = self.brnn(xs, ilens_) # xs: (B * C, T, D) -> xs: (B, C, T, D) xs = xs.view(-1, C, xs.size(-2), xs.size(-1)) masks = [] for linear in self.linears: # xs: (B, C, T, D) -> mask:(B, C, T, F) mask = linear(xs) if self.nonlinear == "sigmoid": mask = torch.sigmoid(mask) elif self.nonlinear == "relu": mask = torch.relu(mask) elif self.nonlinear == "tanh": mask = torch.tanh(mask) elif self.nonlinear == "crelu": mask = torch.clamp(mask, min=0, max=1) # Zero padding mask.masked_fill(make_pad_mask(ilens, mask, length_dim=2), 0) # (B, C, T, F) -> (B, F, C, T) mask = mask.permute(0, 3, 1, 2) # Take cares of multi gpu cases: If input_length > max(ilens) if mask.size(-1) < input_length: mask = F.pad(mask, [0, input_length - mask.size(-1)], value=0) masks.append(mask) return tuple(masks), ilens