#!/usr/bin/env python3
import argparse
import logging
import sys
from pathlib import Path
from typing import Any, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from typeguard import check_argument_types, check_return_type
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.enh_s2t import EnhS2TTask
from espnet2.tasks.lm import LMTask
from espnet2.tasks.st import STTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.nets.batch_beam_search import BatchBeamSearch
from espnet.nets.beam_search import BeamSearch, Hypothesis
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.cli_utils import get_commandline_args
[docs]class Speech2Text:
"""Speech2Text class
Examples:
>>> import soundfile
>>> speech2text = Speech2Text("st_config.yml", "st.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech2text(audio)
[(text, token, token_int, hypothesis object), ...]
"""
def __init__(
self,
st_train_config: Union[Path, str] = None,
st_model_file: Union[Path, str] = None,
lm_train_config: Union[Path, str] = None,
lm_file: Union[Path, str] = None,
ngram_scorer: str = "full",
ngram_file: Union[Path, str] = None,
token_type: str = None,
bpemodel: str = None,
device: str = "cpu",
maxlenratio: float = 0.0,
minlenratio: float = 0.0,
batch_size: int = 1,
dtype: str = "float32",
beam_size: int = 20,
lm_weight: float = 1.0,
ngram_weight: float = 0.9,
penalty: float = 0.0,
nbest: int = 1,
enh_s2t_task: bool = False,
):
assert check_argument_types()
task = STTask if not enh_s2t_task else EnhS2TTask
# 1. Build ST model
scorers = {}
st_model, st_train_args = task.build_model_from_file(
st_train_config, st_model_file, device
)
if enh_s2t_task:
st_model.inherite_attributes(
inherite_s2t_attrs=[
"ctc",
"decoder",
"eos",
"joint_network",
"sos",
"token_list",
"use_transducer_decoder",
]
)
st_model.to(dtype=getattr(torch, dtype)).eval()
decoder = st_model.decoder
token_list = st_model.token_list
scorers.update(
decoder=decoder,
length_bonus=LengthBonus(len(token_list)),
)
# 2. Build Language model
if lm_train_config is not None:
lm, lm_train_args = LMTask.build_model_from_file(
lm_train_config, lm_file, device
)
scorers["lm"] = lm.lm
# 3. Build ngram model
if ngram_file is not None:
if ngram_scorer == "full":
from espnet.nets.scorers.ngram import NgramFullScorer
ngram = NgramFullScorer(ngram_file, token_list)
else:
from espnet.nets.scorers.ngram import NgramPartScorer
ngram = NgramPartScorer(ngram_file, token_list)
else:
ngram = None
scorers["ngram"] = ngram
# 4. Build BeamSearch object
weights = dict(
decoder=1.0,
lm=lm_weight,
ngram=ngram_weight,
length_bonus=penalty,
)
beam_search = BeamSearch(
beam_size=beam_size,
weights=weights,
scorers=scorers,
sos=st_model.sos,
eos=st_model.eos,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key="full",
)
# TODO(karita): make all scorers batchfied
if batch_size == 1:
non_batch = [
k
for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
if len(non_batch) == 0:
beam_search.__class__ = BatchBeamSearch
logging.info("BatchBeamSearch implementation is selected.")
else:
logging.warning(
f"As non-batch scorers {non_batch} are found, "
f"fall back to non-batch implementation."
)
beam_search.to(device=device, dtype=getattr(torch, dtype)).eval()
for scorer in scorers.values():
if isinstance(scorer, torch.nn.Module):
scorer.to(device=device, dtype=getattr(torch, dtype)).eval()
logging.info(f"Beam_search: {beam_search}")
logging.info(f"Decoding device={device}, dtype={dtype}")
# 4. [Optional] Build Text converter: e.g. bpe-sym -> Text
if token_type is None:
token_type = st_train_args.token_type
if bpemodel is None:
bpemodel = st_train_args.bpemodel
if token_type is None:
tokenizer = None
elif token_type == "bpe":
if bpemodel is not None:
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
else:
tokenizer = None
else:
tokenizer = build_tokenizer(token_type=token_type)
converter = TokenIDConverter(token_list=token_list)
logging.info(f"Text tokenizer: {tokenizer}")
self.st_model = st_model
self.st_train_args = st_train_args
self.converter = converter
self.tokenizer = tokenizer
self.beam_search = beam_search
self.maxlenratio = maxlenratio
self.minlenratio = minlenratio
self.device = device
self.dtype = dtype
self.nbest = nbest
@torch.no_grad()
def __call__(
self, speech: Union[torch.Tensor, np.ndarray]
) -> List[Tuple[Optional[str], List[str], List[int], Hypothesis]]:
"""Inference
Args:
data: Input speech data
Returns:
text, token, token_int, hyp
"""
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
# data: (Nsamples,) -> (1, Nsamples)
speech = speech.unsqueeze(0).to(getattr(torch, self.dtype))
# lengths: (1,)
lengths = speech.new_full([1], dtype=torch.long, fill_value=speech.size(1))
batch = {"speech": speech, "speech_lengths": lengths}
# a. To device
batch = to_device(batch, device=self.device)
# b. Forward Encoder
enc, _ = self.st_model.encode(**batch)
assert len(enc) == 1, len(enc)
# c. Passed the encoder result and the beam search
nbest_hyps = self.beam_search(
x=enc[0], maxlenratio=self.maxlenratio, minlenratio=self.minlenratio
)
nbest_hyps = nbest_hyps[: self.nbest]
results = []
for hyp in nbest_hyps:
assert isinstance(hyp, Hypothesis), type(hyp)
# remove sos/eos and get results
token_int = hyp.yseq[1:-1].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != 0, token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
if self.tokenizer is not None:
text = self.tokenizer.tokens2text(token)
else:
text = None
results.append((text, token, token_int, hyp))
assert check_return_type(results)
return results
[docs] @staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build Speech2Text instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
Speech2Text: Speech2Text instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return Speech2Text(**kwargs)
[docs]def inference(
output_dir: str,
maxlenratio: float,
minlenratio: float,
batch_size: int,
dtype: str,
beam_size: int,
ngpu: int,
seed: int,
lm_weight: float,
ngram_weight: float,
penalty: float,
nbest: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
st_train_config: Optional[str],
st_model_file: Optional[str],
lm_train_config: Optional[str],
lm_file: Optional[str],
word_lm_train_config: Optional[str],
word_lm_file: Optional[str],
ngram_file: Optional[str],
model_tag: Optional[str],
token_type: Optional[str],
bpemodel: Optional[str],
allow_variable_data_keys: bool,
enh_s2t_task: bool,
):
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
st_train_config=st_train_config,
st_model_file=st_model_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
ngram_file=ngram_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
lm_weight=lm_weight,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
enh_s2t_task=enh_s2t_task,
)
speech2text = Speech2Text.from_pretrained(
model_tag=model_tag,
**speech2text_kwargs,
)
# 3. Build data-iterator
loader = STTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=STTask.build_preprocess_fn(speech2text.st_train_args, False),
collate_fn=STTask.build_collate_fn(speech2text.st_train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
with DatadirWriter(output_dir) as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
# N-best list of (text, token, token_int, hyp_object)
try:
results = speech2text(**batch)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["<space>"], [2], hyp]] * nbest
# Only supporting batch_size==1
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
ibest_writer["text"][key] = text
[docs]def get_parser():
parser = config_argparse.ArgumentParser(
description="ST Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--st_train_config",
type=str,
help="ST training configuration",
)
group.add_argument(
"--st_model_file",
type=str,
help="ST model parameter file",
)
group.add_argument(
"--lm_train_config",
type=str,
help="LM training configuration",
)
group.add_argument(
"--lm_file",
type=str,
help="LM parameter file",
)
group.add_argument(
"--word_lm_train_config",
type=str,
help="Word LM training configuration",
)
group.add_argument(
"--word_lm_file",
type=str,
help="Word LM parameter file",
)
group.add_argument(
"--ngram_file",
type=str,
help="N-gram parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, *_train_config and "
"*_file will be overwritten",
)
group.add_argument(
"--enh_s2t_task",
type=str2bool,
default=False,
help="enhancement and asr joint model",
)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
group.add_argument(
"--maxlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain max output length. "
"If maxlenratio=0.0 (default), it uses a end-detect "
"function "
"to automatically find maximum hypothesis lengths."
"If maxlenratio<0.0, its absolute value is interpreted"
"as a constant max output length",
)
group.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain min output length",
)
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
group.add_argument("--ngram_weight", type=float, default=0.9, help="ngram weight")
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "bpe", None],
help="The token type for ST model. "
"If not given, refers from the training args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model path of sentencepiece. "
"If not given, refers from the training args",
)
return parser
[docs]def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()