Source code for espnet2.bin.diar_inference

#!/usr/bin/env python3

import argparse
import logging
import sys
from itertools import permutations
from pathlib import Path
from typing import Any, List, Optional, Sequence, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from tqdm import trange
from typeguard import check_argument_types

from espnet2.enh.loss.criterions.tf_domain import FrequencyDomainMSE
from espnet2.enh.loss.criterions.time_domain import SISNRLoss
from espnet2.enh.loss.wrappers.pit_solver import PITSolver
from espnet2.fileio.npy_scp import NpyScpWriter
from espnet2.fileio.sound_scp import SoundScpWriter
from espnet2.tasks.diar import DiarizationTask
from espnet2.tasks.enh_s2t import EnhS2TTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import (
    humanfriendly_parse_size_or_none,
    int_or_none,
    str2bool,
    str2triple_str,
    str_or_none,
)
from espnet.utils.cli_utils import get_commandline_args


[docs]class DiarizeSpeech: """DiarizeSpeech class Examples: >>> import soundfile >>> diarization = DiarizeSpeech("diar_config.yaml", "diar.pth") >>> audio, rate = soundfile.read("speech.wav") >>> diarization(audio) [(spk_id, start, end), (spk_id2, start2, end2)] """ def __init__( self, train_config: Union[Path, str] = None, model_file: Union[Path, str] = None, segment_size: Optional[float] = None, hop_size: Optional[float] = None, normalize_segment_scale: bool = False, show_progressbar: bool = False, normalize_output_wav: bool = False, num_spk: Optional[int] = None, device: str = "cpu", dtype: str = "float32", enh_s2t_task: bool = False, multiply_diar_result: bool = False, ): assert check_argument_types() task = DiarizationTask if not enh_s2t_task else EnhS2TTask # 1. Build Diar model diar_model, diar_train_args = task.build_model_from_file( train_config, model_file, device ) if enh_s2t_task: diar_model.inherite_attributes( inherite_s2t_attrs=[ "decoder", "attractor", ], inherite_enh_attrs=[ "mask_module", ], ) diar_model.to(dtype=getattr(torch, dtype)).eval() self.device = device self.dtype = dtype self.diar_train_args = diar_train_args self.diar_model = diar_model # only used when processing long speech, i.e. # segment_size is not None and hop_size is not None self.segment_size = segment_size self.hop_size = hop_size self.normalize_segment_scale = normalize_segment_scale self.normalize_output_wav = normalize_output_wav self.show_progressbar = show_progressbar # not specifying "num_spk" in inference config file # will enable speaker number prediction during inference self.num_spk = num_spk # multiply_diar_result corresponds to the "Post-processing" # in https://arxiv.org/pdf/2203.17068.pdf self.multiply_diar_result = multiply_diar_result self.enh_s2t_task = enh_s2t_task self.segmenting_diar = segment_size is not None and not enh_s2t_task self.segmenting_enh_diar = ( segment_size is not None and hop_size is not None and enh_s2t_task ) if self.segmenting_diar: logging.info("Perform segment-wise speaker diarization") logging.info("Segment length = {} sec".format(segment_size)) elif self.segmenting_enh_diar: logging.info("Perform segment-wise speech separation and diarization") logging.info( "Segment length = {} sec, hop length = {} sec".format( segment_size, hop_size ) ) else: logging.info("Perform direct speaker diarization on the input") @torch.no_grad() def __call__( self, speech: Union[torch.Tensor, np.ndarray], fs: int = 8000 ) -> List[torch.Tensor]: """Inference Args: speech: Input speech data (Batch, Nsamples [, Channels]) fs: sample rate Returns: [speaker_info1, speaker_info2, ...] """ assert check_argument_types() # Input as audio signal if isinstance(speech, np.ndarray): speech = torch.as_tensor(speech) assert speech.dim() > 1, speech.size() batch_size = speech.size(0) speech = speech.to(getattr(torch, self.dtype)) # lengths: (B,) lengths = speech.new_full( [batch_size], dtype=torch.long, fill_value=speech.size(1) ) # a. To device speech = to_device(speech, device=self.device) lengths = to_device(lengths, device=self.device) if self.segmenting_diar and lengths[0] > self.segment_size * fs: # Segment-wise speaker diarization # Note that the segments are processed independently for now # i.e., no speaker tracing is performed num_segments = int(np.ceil(speech.size(1) / (self.segment_size * fs))) t = T = int(self.segment_size * fs) pad_shape = speech[:, :T].shape diarized_wavs = [] range_ = trange if self.show_progressbar else range for i in range_(num_segments): st = int(i * self.segment_size * fs) en = st + T if en >= lengths[0]: # en - st < T (last segment) en = lengths[0] speech_seg = speech.new_zeros(pad_shape) t = en - st speech_seg[:, :t] = speech[:, st:en] else: t = T speech_seg = speech[:, st:en] # B x T [x C] lengths_seg = speech.new_full( [batch_size], dtype=torch.long, fill_value=T ) # b. Diarization Forward encoder_out, encoder_out_lens = self.encode( speech_seg, lengths_seg, ) spk_prediction, _ = self.decode(encoder_out, encoder_out_lens) # List[torch.Tensor(B, T, num_spks)] diarized_wavs.append(spk_prediction) # Determine maximum estimated number of speakers among the segments max_len = max([x.size(2) for x in diarized_wavs]) # pad tensors in diarized_wavs with "float('-inf')" to have same size diarized_wavs = [ torch.nn.functional.pad( x, (0, max_len - x.size(2)), "constant", float("-inf") ) for x in diarized_wavs ] spk_prediction = torch.cat(diarized_wavs, dim=1) waves = None else: # b. Diarization Forward encoder_out, encoder_out_lens = self.encode(speech, lengths) spk_prediction, num_spk = self.decode(encoder_out, encoder_out_lens) if self.enh_s2t_task: # Segment-wise speech separation # Note that this is done after diarization using the whole sequence if self.segmenting_enh_diar and lengths[0] > self.segment_size * fs: overlap_length = int( np.round(fs * (self.segment_size - self.hop_size)) ) num_segments = int( np.ceil( (speech.size(1) - overlap_length) / (self.hop_size * fs) ) ) t = T = int(self.segment_size * fs) pad_shape = speech[:, :T].shape enh_waves = [] range_ = trange if self.show_progressbar else range for i in range_(num_segments): st = int(i * self.hop_size * fs) en = st + T if en >= lengths[0]: # en - st < T (last segment) en = lengths[0] speech_seg = speech.new_zeros(pad_shape) t = en - st speech_seg[:, :t] = speech[:, st:en] else: t = T speech_seg = speech[:, st:en] # B x T [x C] lengths_seg = speech.new_full( [batch_size], dtype=torch.long, fill_value=T ) # Separation Forward _, _, processed_wav = self.diar_model.encode_diar( speech_seg, lengths_seg, num_spk ) if self.normalize_segment_scale: # normalize the scale to match the input mixture scale mix_energy = torch.sqrt( torch.mean( speech_seg[:, :t].pow(2), dim=1, keepdim=True ) ) enh_energy = torch.sqrt( torch.mean( sum(processed_wav)[:, :t].pow(2), dim=1, keepdim=True, ) ) processed_wav = [ w * (mix_energy / enh_energy) for w in processed_wav ] # List[torch.Tensor(num_spk, B, T)] enh_waves.append(torch.stack(processed_wav, dim=0)) # c. Stitch the enhanced segments together waves = enh_waves[0] for i in range(1, num_segments): # permutation between separated streams # in last and current segments perm = self.cal_permumation( waves[:, :, -overlap_length:], enh_waves[i][:, :, :overlap_length], criterion="si_snr", ) # repermute separated streams in current segment for batch in range(batch_size): enh_waves[i][:, batch] = enh_waves[i][perm[batch], batch] if i == num_segments - 1: enh_waves[i][:, :, t:] = 0 enh_waves_res_i = enh_waves[i][:, :, overlap_length:t] else: enh_waves_res_i = enh_waves[i][:, :, overlap_length:] # overlap-and-add (average over the overlapped part) waves[:, :, -overlap_length:] = ( waves[:, :, -overlap_length:] + enh_waves[i][:, :, :overlap_length] ) / 2 # concatenate the residual parts of the later segment waves = torch.cat([waves, enh_waves_res_i], dim=2) # ensure the stitched length is same as input assert waves.size(2) == speech.size(1), (waves.shape, speech.shape) waves = torch.unbind(waves, dim=0) else: # Separation Forward using the whole signal _, _, waves = self.diar_model.encode_diar(speech, lengths, num_spk) # multiply diarization result and separation result # by calculating the correlation if self.multiply_diar_result: spk_prediction, interp_prediction, _ = self.permute_diar( waves, spk_prediction ) waves = [ waves[i] * interp_prediction[:, :, i] for i in range(num_spk) ] if self.normalize_output_wav: waves = [ (w / abs(w).max(dim=1, keepdim=True)[0] * 0.9).cpu().numpy() for w in waves ] # list[(batch, sample)] else: waves = [w.cpu().numpy() for w in waves] else: waves = None if self.num_spk is not None: assert spk_prediction.size(2) == self.num_spk, ( spk_prediction.size(2), self.num_spk, ) assert spk_prediction.size(0) == batch_size, ( spk_prediction.size(0), batch_size, ) spk_prediction = spk_prediction.cpu().numpy() spk_prediction = 1 / (1 + np.exp(-spk_prediction)) return waves, spk_prediction if self.enh_s2t_task else spk_prediction
[docs] @torch.no_grad() def cal_permumation(self, ref_wavs, enh_wavs, criterion="si_snr"): """Calculate the permutation between seaprated streams in two adjacent segments. Args: ref_wavs (List[torch.Tensor]): [(Batch, Nsamples)] enh_wavs (List[torch.Tensor]): [(Batch, Nsamples)] criterion (str): one of ("si_snr", "mse", "corr) Returns: perm (torch.Tensor): permutation for enh_wavs (Batch, num_spk) """ criterion_class = {"si_snr": SISNRLoss, "mse": FrequencyDomainMSE}[criterion] pit_solver = PITSolver(criterion=criterion_class()) _, _, others = pit_solver(ref_wavs, enh_wavs) perm = others["perm"] return perm
[docs] @staticmethod def from_pretrained( model_tag: Optional[str] = None, **kwargs: Optional[Any], ): """Build DiarizeSpeech instance from the pretrained model. Args: model_tag (Optional[str]): Model tag of the pretrained models. Currently, the tags of espnet_model_zoo are supported. Returns: DiarizeSpeech: DiarizeSpeech instance. """ if model_tag is not None: try: from espnet_model_zoo.downloader import ModelDownloader except ImportError: logging.error( "`espnet_model_zoo` is not installed. " "Please install via `pip install -U espnet_model_zoo`." ) raise d = ModelDownloader() kwargs.update(**d.download_and_unpack(model_tag)) return DiarizeSpeech(**kwargs)
[docs] def permute_diar(self, waves, spk_prediction): # Permute the diarization result using the correlation # between wav and spk_prediction # FIXME(YushiUeda): batch_size > 1 is not considered num_spk = len(waves) permute_list = [np.array(p) for p in permutations(range(num_spk))] corr_list = [] interp_prediction = F.interpolate( torch.sigmoid(spk_prediction).transpose(1, 2), size=waves[0].size(1), mode="linear", ).transpose(1, 2) for p in permute_list: diar_perm = interp_prediction[:, :, p] corr_perm = [0] for q in range(num_spk): corr_perm += np.corrcoef( torch.squeeze(abs(waves[q])).cpu().numpy(), torch.squeeze(diar_perm[:, :, q]).cpu().numpy(), )[0, 1] corr_list.append(corr_perm) max_corr, max_idx = torch.max(torch.from_numpy(np.array(corr_list)), dim=0) return ( spk_prediction[:, :, permute_list[max_idx]], interp_prediction[:, :, permute_list[max_idx]], permute_list[max_idx], )
[docs] def encode(self, speech, lengths): if self.enh_s2t_task: encoder_out, encoder_out_lens, _ = self.diar_model.encode_diar( speech, lengths, self.num_spk ) else: bottleneck_feats = bottleneck_feats_lengths = None encoder_out, encoder_out_lens = self.diar_model.encode( speech, lengths, bottleneck_feats, bottleneck_feats_lengths ) return encoder_out, encoder_out_lens
[docs] def decode(self, encoder_out, encoder_out_lens): # SA-EEND if self.diar_model.attractor is None: assert self.num_spk is not None, 'Argument "num_spk" must be specified' spk_prediction = self.diar_model.decoder(encoder_out, encoder_out_lens) num_spk = self.num_spk # EEND-EDA else: # if num_spk is specified, use that number if self.num_spk is not None: attractor, att_prob = self.diar_model.attractor( encoder_out, encoder_out_lens, to_device( torch.zeros( encoder_out.size(0), self.num_spk + 1, encoder_out.size(2), ), device=self.device, ), ) spk_prediction = torch.bmm( encoder_out, attractor[:, : self.num_spk, :].permute(0, 2, 1), ) num_spk = self.num_spk # else find the first att_prob[i] < 0 else: max_num_spk = 15 # upper bound number for estimation attractor, att_prob = self.diar_model.attractor( encoder_out, encoder_out_lens, to_device( torch.zeros( encoder_out.size(0), max_num_spk + 1, encoder_out.size(2), ), device=self.device, ), ) att_prob = torch.squeeze(att_prob) for num_spk in range(len(att_prob)): if att_prob[num_spk].item() < 0: break spk_prediction = torch.bmm( encoder_out, attractor[:, :num_spk, :].permute(0, 2, 1) ) return spk_prediction, num_spk
[docs]def inference( output_dir: str, batch_size: int, dtype: str, fs: int, ngpu: int, seed: int, num_workers: int, log_level: Union[int, str], data_path_and_name_and_type: Sequence[Tuple[str, str, str]], key_file: Optional[str], train_config: Optional[str], model_file: Optional[str], model_tag: Optional[str], allow_variable_data_keys: bool, segment_size: Optional[float], hop_size: Optional[float], normalize_segment_scale: bool, show_progressbar: bool, num_spk: Optional[int], normalize_output_wav: bool, multiply_diar_result: bool, enh_s2t_task: bool, ): assert check_argument_types() if batch_size > 1: raise NotImplementedError("batch decoding is not implemented") if ngpu > 1: raise NotImplementedError("only single GPU decoding is supported") logging.basicConfig( level=log_level, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", ) if ngpu >= 1: device = "cuda" else: device = "cpu" # 1. Set random-seed set_all_random_seed(seed) # 2. Build separate_speech diarize_speech_kwargs = dict( train_config=train_config, model_file=model_file, segment_size=segment_size, hop_size=hop_size, normalize_segment_scale=normalize_segment_scale, show_progressbar=show_progressbar, normalize_output_wav=normalize_output_wav, num_spk=num_spk, device=device, dtype=dtype, multiply_diar_result=multiply_diar_result, enh_s2t_task=enh_s2t_task, ) diarize_speech = DiarizeSpeech.from_pretrained( model_tag=model_tag, **diarize_speech_kwargs, ) # 3. Build data-iterator loader = DiarizationTask.build_streaming_iterator( data_path_and_name_and_type, dtype=dtype, batch_size=batch_size, key_file=key_file, num_workers=num_workers, preprocess_fn=DiarizationTask.build_preprocess_fn( diarize_speech.diar_train_args, False ), collate_fn=DiarizationTask.build_collate_fn( diarize_speech.diar_train_args, False ), allow_variable_data_keys=allow_variable_data_keys, inference=True, ) # 4. Start for-loop writer = NpyScpWriter(f"{output_dir}/predictions", f"{output_dir}/diarize.scp") if enh_s2t_task: wav_writers = [] if diarize_speech.num_spk is not None: for i in range(diarize_speech.num_spk): wav_writers.append( SoundScpWriter( f"{output_dir}/wavs/{i + 1}", f"{output_dir}/spk{i + 1}.scp" ) ) else: for i in range(diarize_speech.diar_model.mask_module.max_num_spk): wav_writers.append( SoundScpWriter( f"{output_dir}/wavs/{i + 1}", f"{output_dir}/spk{i + 1}.scp" ) ) for keys, batch in loader: assert isinstance(batch, dict), type(batch) assert all(isinstance(s, str) for s in keys), keys _bs = len(next(iter(batch.values()))) assert len(keys) == _bs, f"{len(keys)} != {_bs}" batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")} if enh_s2t_task: waves, spk_predictions = diarize_speech(**batch) for b in range(batch_size): writer[keys[b]] = spk_predictions[b] for spk, w in enumerate(waves): wav_writers[spk][keys[b]] = fs, w[b] else: spk_predictions = diarize_speech(**batch) for b in range(batch_size): writer[keys[b]] = spk_predictions[b] if enh_s2t_task: for w in wav_writers: w.close() writer.close()
[docs]def get_parser(): parser = config_argparse.ArgumentParser( description="Speaker Diarization inference", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Note(kamo): Use '_' instead of '-' as separator. # '-' is confusing if written in yaml. parser.add_argument( "--log_level", type=lambda x: x.upper(), default="INFO", choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"), help="The verbose level of logging", ) parser.add_argument("--output_dir", type=str, required=True) parser.add_argument( "--ngpu", type=int, default=0, help="The number of gpus. 0 indicates CPU mode", ) parser.add_argument("--seed", type=int, default=0, help="Random seed") parser.add_argument( "--dtype", default="float32", choices=["float16", "float32", "float64"], help="Data type", ) parser.add_argument( "--fs", type=humanfriendly_parse_size_or_none, default=8000, help="Sampling rate", ) parser.add_argument( "--num_workers", type=int, default=1, help="The number of workers used for DataLoader", ) group = parser.add_argument_group("Input data related") group.add_argument( "--data_path_and_name_and_type", type=str2triple_str, required=True, action="append", ) group.add_argument("--key_file", type=str_or_none) group.add_argument("--allow_variable_data_keys", type=str2bool, default=False) group = parser.add_argument_group("The model configuration related") group.add_argument( "--train_config", type=str, help="Diarization training configuration", ) group.add_argument( "--model_file", type=str, help="Diarization model parameter file", ) group.add_argument( "--model_tag", type=str, help="Pretrained model tag. If specify this option, train_config and " "model_file will be overwritten", ) group = parser.add_argument_group("Data loading related") group.add_argument( "--batch_size", type=int, default=1, help="The batch size for inference", ) group = parser.add_argument_group("Diarize speech related") group.add_argument( "--segment_size", type=float, default=None, help="Segment length in seconds for segment-wise speaker diarization", ) group.add_argument( "--hop_size", type=float, default=None, help="Hop length in seconds for segment-wise speech enhancement/separation", ) group.add_argument( "--show_progressbar", type=str2bool, default=False, help="Whether to show a progress bar when performing segment-wise speaker " "diarization", ) group.add_argument( "--num_spk", type=int_or_none, default=None, help="Predetermined number of speakers for inference", ) group = parser.add_argument_group("Enh + Diar related") group.add_argument( "--enh_s2t_task", type=str2bool, default=False, help="enhancement and diarization joint model", ) group.add_argument( "--normalize_segment_scale", type=str2bool, default=False, help="Whether to normalize the energy of the separated streams in each segment", ) group.add_argument( "--normalize_output_wav", type=str2bool, default=False, help="Whether to normalize the predicted wav to [-1~1]", ) group.add_argument( "--multiply_diar_result", type=str2bool, default=False, help="Whether to multiply diar results to separated waves", ) return parser
[docs]def main(cmd=None): print(get_commandline_args(), file=sys.stderr) parser = get_parser() args = parser.parse_args(cmd) kwargs = vars(args) kwargs.pop("config", None) inference(**kwargs)
if __name__ == "__main__": main()