#!/usr/bin/env python3
import argparse
import logging
import math
import sys
from pathlib import Path
from typing import List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from typeguard import check_argument_types, check_return_type
from espnet2.asr.encoder.contextual_block_conformer_encoder import ( # noqa: H301
ContextualBlockConformerEncoder,
)
from espnet2.asr.encoder.contextual_block_transformer_encoder import ( # noqa: H301
ContextualBlockTransformerEncoder,
)
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.tasks.asr import ASRTask
from espnet2.tasks.lm import LMTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.nets.batch_beam_search_online import BatchBeamSearchOnline
from espnet.nets.beam_search import Hypothesis
from espnet.nets.pytorch_backend.transformer.subsampling import TooShortUttError
from espnet.nets.scorer_interface import BatchScorerInterface
from espnet.nets.scorers.ctc import CTCPrefixScorer
from espnet.nets.scorers.length_bonus import LengthBonus
from espnet.utils.cli_utils import get_commandline_args
[docs]class Speech2TextStreaming:
"""Speech2TextStreaming class
Details in "Streaming Transformer ASR with Blockwise Synchronous Beam Search"
(https://arxiv.org/abs/2006.14941)
Examples:
>>> import soundfile
>>> speech2text = Speech2TextStreaming("asr_config.yml", "asr.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech2text(audio)
[(text, token, token_int, hypothesis object), ...]
"""
def __init__(
self,
asr_train_config: Union[Path, str],
asr_model_file: Union[Path, str] = None,
lm_train_config: Union[Path, str] = None,
lm_file: Union[Path, str] = None,
token_type: str = None,
bpemodel: str = None,
device: str = "cpu",
maxlenratio: float = 0.0,
minlenratio: float = 0.0,
batch_size: int = 1,
dtype: str = "float32",
beam_size: int = 20,
ctc_weight: float = 0.5,
lm_weight: float = 1.0,
penalty: float = 0.0,
nbest: int = 1,
disable_repetition_detection=False,
decoder_text_length_limit=0,
encoded_feat_length_limit=0,
):
assert check_argument_types()
# 1. Build ASR model
scorers = {}
asr_model, asr_train_args = ASRTask.build_model_from_file(
asr_train_config, asr_model_file, device
)
asr_model.to(dtype=getattr(torch, dtype)).eval()
assert isinstance(
asr_model.encoder, ContextualBlockTransformerEncoder
) or isinstance(asr_model.encoder, ContextualBlockConformerEncoder)
decoder = asr_model.decoder
ctc = CTCPrefixScorer(ctc=asr_model.ctc, eos=asr_model.eos)
token_list = asr_model.token_list
scorers.update(
decoder=decoder,
ctc=ctc,
length_bonus=LengthBonus(len(token_list)),
)
# 2. Build Language model
if lm_train_config is not None:
lm, lm_train_args = LMTask.build_model_from_file(
lm_train_config, lm_file, device
)
scorers["lm"] = lm.lm
# 3. Build BeamSearch object
weights = dict(
decoder=1.0 - ctc_weight,
ctc=ctc_weight,
lm=lm_weight,
length_bonus=penalty,
)
assert "encoder_conf" in asr_train_args
assert "look_ahead" in asr_train_args.encoder_conf
assert "hop_size" in asr_train_args.encoder_conf
assert "block_size" in asr_train_args.encoder_conf
# look_ahead = asr_train_args.encoder_conf['look_ahead']
# hop_size = asr_train_args.encoder_conf['hop_size']
# block_size = asr_train_args.encoder_conf['block_size']
assert batch_size == 1
beam_search = BatchBeamSearchOnline(
beam_size=beam_size,
weights=weights,
scorers=scorers,
sos=asr_model.sos,
eos=asr_model.eos,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key=None if ctc_weight == 1.0 else "full",
disable_repetition_detection=disable_repetition_detection,
decoder_text_length_limit=decoder_text_length_limit,
encoded_feat_length_limit=encoded_feat_length_limit,
)
non_batch = [
k
for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
assert len(non_batch) == 0
# TODO(karita): make all scorers batchfied
logging.info("BatchBeamSearchOnline implementation is selected.")
beam_search.to(device=device, dtype=getattr(torch, dtype)).eval()
for scorer in scorers.values():
if isinstance(scorer, torch.nn.Module):
scorer.to(device=device, dtype=getattr(torch, dtype)).eval()
logging.info(f"Beam_search: {beam_search}")
logging.info(f"Decoding device={device}, dtype={dtype}")
# 4. [Optional] Build Text converter: e.g. bpe-sym -> Text
if token_type is None:
token_type = asr_train_args.token_type
if bpemodel is None:
bpemodel = asr_train_args.bpemodel
if token_type is None:
tokenizer = None
elif token_type == "bpe":
if bpemodel is not None:
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
else:
tokenizer = None
else:
tokenizer = build_tokenizer(token_type=token_type)
converter = TokenIDConverter(token_list=token_list)
logging.info(f"Text tokenizer: {tokenizer}")
self.asr_model = asr_model
self.asr_train_args = asr_train_args
self.converter = converter
self.tokenizer = tokenizer
self.beam_search = beam_search
self.maxlenratio = maxlenratio
self.minlenratio = minlenratio
self.device = device
self.dtype = dtype
self.nbest = nbest
if "n_fft" in asr_train_args.frontend_conf:
self.n_fft = asr_train_args.frontend_conf["n_fft"]
else:
self.n_fft = 512
if "hop_length" in asr_train_args.frontend_conf:
self.hop_length = asr_train_args.frontend_conf["hop_length"]
else:
self.hop_length = 128
if (
"win_length" in asr_train_args.frontend_conf
and asr_train_args.frontend_conf["win_length"] is not None
):
self.win_length = asr_train_args.frontend_conf["win_length"]
else:
self.win_length = self.n_fft
self.reset()
[docs] def reset(self):
self.frontend_states = None
self.encoder_states = None
self.beam_search.reset()
[docs] def apply_frontend(
self, speech: torch.Tensor, prev_states=None, is_final: bool = False
):
if prev_states is not None:
buf = prev_states["waveform_buffer"]
speech = torch.cat([buf, speech], dim=0)
has_enough_samples = False if speech.size(0) <= self.win_length else True
if not has_enough_samples:
if is_final:
pad = torch.zeros(self.win_length - speech.size(0), dtype=speech.dtype)
speech = torch.cat([speech, pad], dim=0)
else:
feats = None
feats_lengths = None
next_states = {"waveform_buffer": speech.clone()}
return feats, feats_lengths, next_states
if is_final:
speech_to_process = speech
waveform_buffer = None
else:
n_frames = speech.size(0) // self.hop_length
n_residual = speech.size(0) % self.hop_length
speech_to_process = speech.narrow(0, 0, n_frames * self.hop_length)
waveform_buffer = speech.narrow(
0,
speech.size(0)
- (math.ceil(math.ceil(self.win_length / self.hop_length) / 2) * 2 - 1)
* self.hop_length
- n_residual,
(math.ceil(math.ceil(self.win_length / self.hop_length) / 2) * 2 - 1)
* self.hop_length
+ n_residual,
).clone()
# data: (Nsamples,) -> (1, Nsamples)
speech_to_process = speech_to_process.unsqueeze(0).to(
getattr(torch, self.dtype)
)
lengths = speech_to_process.new_full(
[1], dtype=torch.long, fill_value=speech_to_process.size(1)
)
batch = {"speech": speech_to_process, "speech_lengths": lengths}
# lenghts: (1,)
# a. To device
batch = to_device(batch, device=self.device)
feats, feats_lengths = self.asr_model._extract_feats(**batch)
if self.asr_model.normalize is not None:
feats, feats_lengths = self.asr_model.normalize(feats, feats_lengths)
# Trimming
if is_final:
if prev_states is None:
pass
else:
feats = feats.narrow(
1,
math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
feats.size(1)
- math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
)
else:
if prev_states is None:
feats = feats.narrow(
1,
0,
feats.size(1)
- math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
)
else:
feats = feats.narrow(
1,
math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
feats.size(1)
- 2 * math.ceil(math.ceil(self.win_length / self.hop_length) / 2),
)
feats_lengths = feats.new_full([1], dtype=torch.long, fill_value=feats.size(1))
if is_final:
next_states = None
else:
next_states = {"waveform_buffer": waveform_buffer}
return feats, feats_lengths, next_states
@torch.no_grad()
def __call__(
self, speech: Union[torch.Tensor, np.ndarray], is_final: bool = True
) -> List[Tuple[Optional[str], List[str], List[int], Hypothesis]]:
"""Inference
Args:
data: Input speech data
Returns:
text, token, token_int, hyp
"""
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
feats, feats_lengths, self.frontend_states = self.apply_frontend(
speech, self.frontend_states, is_final=is_final
)
if feats is not None:
enc, _, self.encoder_states = self.asr_model.encoder(
feats,
feats_lengths,
self.encoder_states,
is_final=is_final,
infer_mode=True,
)
nbest_hyps = self.beam_search(
x=enc[0],
maxlenratio=self.maxlenratio,
minlenratio=self.minlenratio,
is_final=is_final,
)
ret = self.assemble_hyps(nbest_hyps)
else:
ret = []
if is_final:
self.reset()
return ret
[docs] def assemble_hyps(self, hyps):
nbest_hyps = hyps[: self.nbest]
results = []
for hyp in nbest_hyps:
assert isinstance(hyp, Hypothesis), type(hyp)
# remove sos/eos and get results
token_int = hyp.yseq[1:-1].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != 0, token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
if self.tokenizer is not None:
text = self.tokenizer.tokens2text(token)
else:
text = None
results.append((text, token, token_int, hyp))
assert check_return_type(results)
return results
[docs]def inference(
output_dir: str,
maxlenratio: float,
minlenratio: float,
batch_size: int,
dtype: str,
beam_size: int,
ngpu: int,
seed: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
nbest: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
asr_train_config: str,
asr_model_file: str,
lm_train_config: Optional[str],
lm_file: Optional[str],
word_lm_train_config: Optional[str],
word_lm_file: Optional[str],
token_type: Optional[str],
bpemodel: Optional[str],
allow_variable_data_keys: bool,
sim_chunk_length: int,
disable_repetition_detection: bool,
encoded_feat_length_limit: int,
decoder_text_length_limit: int,
):
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text = Speech2TextStreaming(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
penalty=penalty,
nbest=nbest,
disable_repetition_detection=disable_repetition_detection,
decoder_text_length_limit=decoder_text_length_limit,
encoded_feat_length_limit=encoded_feat_length_limit,
)
# 3. Build data-iterator
loader = ASRTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
with DatadirWriter(output_dir) as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
assert len(batch.keys()) == 1
try:
if sim_chunk_length == 0:
# N-best list of (text, token, token_int, hyp_object)
results = speech2text(**batch)
else:
speech = batch["speech"]
for i in range(len(speech) // sim_chunk_length):
speech2text(
speech=speech[
i * sim_chunk_length : (i + 1) * sim_chunk_length
],
is_final=False,
)
results = speech2text(
speech[(i + 1) * sim_chunk_length : len(speech)], is_final=True
)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["<space>"], [2], hyp]] * nbest
# Only supporting batch_size==1
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
ibest_writer["text"][key] = text
[docs]def get_parser():
parser = config_argparse.ArgumentParser(
description="ASR Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group.add_argument(
"--sim_chunk_length",
type=int,
default=0,
help="The length of one chunk, to which speech will be "
"divided for evalution of streaming processing.",
)
group = parser.add_argument_group("The model configuration related")
group.add_argument("--asr_train_config", type=str, required=True)
group.add_argument("--asr_model_file", type=str, required=True)
group.add_argument("--lm_train_config", type=str)
group.add_argument("--lm_file", type=str)
group.add_argument("--word_lm_train_config", type=str)
group.add_argument("--word_lm_file", type=str)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
group.add_argument(
"--maxlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain max output length. "
"If maxlenratio=0.0 (default), it uses a end-detect "
"function "
"to automatically find maximum hypothesis lengths",
)
group.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain min output length",
)
group.add_argument(
"--ctc_weight",
type=float,
default=0.5,
help="CTC weight in joint decoding",
)
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
group.add_argument("--disable_repetition_detection", type=str2bool, default=False)
group.add_argument(
"--encoded_feat_length_limit",
type=int,
default=0,
help="Limit the lengths of the encoded feature" "to input to the decoder.",
)
group.add_argument(
"--decoder_text_length_limit",
type=int,
default=0,
help="Limit the lengths of the text" "to input to the decoder.",
)
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "bpe", None],
help="The token type for ASR model. "
"If not given, refers from the training args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model path of sentencepiece. "
"If not given, refers from the training args",
)
return parser
[docs]def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()