Source code for espnet2.asr_transducer.joint_network

"""Transducer joint network implementation."""

import torch

from espnet2.asr_transducer.activation import get_activation


[docs]class JointNetwork(torch.nn.Module): """Transducer joint network module. Args: output_size: Output size. encoder_size: Encoder output size. decoder_size: Decoder output size. joint_space_size: Joint space size. joint_act_type: Type of activation for joint network. **activation_parameters: Parameters for the activation function. """ def __init__( self, output_size: int, encoder_size: int, decoder_size: int, joint_space_size: int = 256, joint_activation_type: str = "tanh", **activation_parameters, ) -> None: """Construct a JointNetwork object.""" super().__init__() self.lin_enc = torch.nn.Linear(encoder_size, joint_space_size) self.lin_dec = torch.nn.Linear(decoder_size, joint_space_size) self.lin_out = torch.nn.Linear(joint_space_size, output_size) self.joint_activation = get_activation( joint_activation_type, **activation_parameters )
[docs] def forward( self, enc_out: torch.Tensor, dec_out: torch.Tensor, no_projection: bool = False, ) -> torch.Tensor: """Joint computation of encoder and decoder hidden state sequences. Args: enc_out: Expanded encoder output state sequences. (B, T, s_range, D_enc) or (B, T, 1, D_enc) dec_out: Expanded decoder output state sequences. (B, T, s_range, D_dec) or (B, 1, U, D_dec) Returns: joint_out: Joint output state sequences. (B, T, U, D_out) or (B, T, s_range, D_out) """ if no_projection: joint_out = self.joint_activation(enc_out + dec_out) else: joint_out = self.joint_activation( self.lin_enc(enc_out) + self.lin_dec(dec_out) ) return self.lin_out(joint_out)