Source code for espnet2.asr_transducer.encoder.modules.positional_encoding

"""Positional encoding modules."""

import math

import torch

from espnet.nets.pytorch_backend.transformer.embedding import _pre_hook


[docs]class RelPositionalEncoding(torch.nn.Module): """Relative positional encoding. Args: size: Module size. max_len: Maximum input length. dropout_rate: Dropout rate. """ def __init__( self, size: int, dropout_rate: float = 0.0, max_len: int = 5000 ) -> None: """Construct a RelativePositionalEncoding object.""" super().__init__() self.size = size self.pe = None self.dropout = torch.nn.Dropout(p=dropout_rate) self.extend_pe(torch.tensor(0.0).expand(1, max_len)) self._register_load_state_dict_pre_hook(_pre_hook)
[docs] def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None: """Reset positional encoding. Args: x: Input sequences. (B, T, ?) left_context: Number of previous frames the attention module can see in current chunk. """ time1 = x.size(1) + left_context if self.pe is not None: if self.pe.size(1) >= time1 * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(device=x.device, dtype=x.dtype) return pe_positive = torch.zeros(time1, self.size) pe_negative = torch.zeros(time1, self.size) position = torch.arange(0, time1, dtype=torch.float32).unsqueeze(1) div_term = torch.exp( torch.arange(0, self.size, 2, dtype=torch.float32) * -(math.log(10000.0) / self.size) ) pe_positive[:, 0::2] = torch.sin(position * div_term) pe_positive[:, 1::2] = torch.cos(position * div_term) pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) pe_negative = pe_negative[1:].unsqueeze(0) self.pe = torch.cat([pe_positive, pe_negative], dim=1).to( dtype=x.dtype, device=x.device )
[docs] def forward(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor: """Compute positional encoding. Args: x: Input sequences. (B, T, ?) left_context: Number of previous frames the attention module can see in current chunk. Returns: pos_enc: Positional embedding sequences. (B, 2 * (T - 1), ?) """ self.extend_pe(x, left_context=left_context) time1 = x.size(1) + left_context pos_enc = self.pe[ :, self.pe.size(1) // 2 - time1 + 1 : self.pe.size(1) // 2 + x.size(1) ] pos_enc = self.dropout(pos_enc) return pos_enc