Source code for espnet2.asr_transducer.encoder.blocks.conv_input
"""ConvInput block for Transducer encoder."""
from typing import Optional, Tuple, Union
import torch
from espnet2.asr_transducer.utils import get_convinput_module_parameters
[docs]class ConvInput(torch.nn.Module):
"""ConvInput module definition.
Args:
input_size: Input size.
conv_size: Convolution size.
subsampling_factor: Subsampling factor.
vgg_like: Whether to use a VGG-like network.
output_size: Block output dimension.
"""
def __init__(
self,
input_size: int,
conv_size: Union[int, Tuple],
subsampling_factor: int = 4,
vgg_like: bool = True,
output_size: Optional[int] = None,
) -> None:
"""Construct a ConvInput object."""
super().__init__()
self.subsampling_factor = subsampling_factor
self.vgg_like = vgg_like
if vgg_like:
conv_size1, conv_size2 = conv_size
self.maxpool_kernel1, output_proj = get_convinput_module_parameters(
input_size, conv_size2, subsampling_factor, is_vgg=True
)
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(1, conv_size1, 3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(conv_size1, conv_size1, 3, stride=1, padding=0),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
self.maxpool_kernel1, stride=2, padding=0, ceil_mode=True
),
torch.nn.Conv2d(conv_size1, conv_size2, 3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(conv_size2, conv_size2, 3, stride=1, padding=0),
torch.nn.ReLU(),
torch.nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True),
)
else:
(
self.conv_kernel2,
self.conv_stride2,
), output_proj = get_convinput_module_parameters(
input_size, conv_size, subsampling_factor, is_vgg=False
)
self.conv = torch.nn.Sequential(
torch.nn.Conv2d(1, conv_size, 3, 2),
torch.nn.ReLU(),
torch.nn.Conv2d(
conv_size, conv_size, self.conv_kernel2, self.conv_stride2
),
torch.nn.ReLU(),
)
self.min_frame_length = 7 if subsampling_factor < 6 else 11
if output_size is not None:
self.output = torch.nn.Linear(output_proj, output_size)
self.output_size = output_size
else:
self.output = None
self.output_size = output_proj
[docs] def forward(
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode input sequences.
Args:
x: ConvInput input sequences. (B, T, D_feats)
mask: Mask of input sequences. (B, 1, T)
Returns:
x: ConvInput output sequences. (B, sub(T), D_out)
mask: Mask of output sequences. (B, 1, sub(T))
"""
x = self.conv(x.unsqueeze(1))
b, c, t, f = x.size()
x = x.transpose(1, 2).contiguous().view(b, t, c * f)
if self.output is not None:
x = self.output(x)
if mask is not None:
mask = mask[:, : x.size(1)]
return x, mask