Source code for espnet2.asr_transducer.decoder.blocks.rwkv

"""Receptance Weighted Key Value (RWKV) block definition.

Based/modified from https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4/src/model.py

"""

from typing import Dict, Optional, Tuple

import torch

from espnet2.asr_transducer.decoder.modules.rwkv.attention import SelfAttention
from espnet2.asr_transducer.decoder.modules.rwkv.feed_forward import FeedForward


[docs]class RWKV(torch.nn.Module): """RWKV module. Args: size: Input/Output size. linear_size: Feed-forward hidden size. attention_size: SelfAttention hidden size. context_size: Context size for WKV computation. block_id: Block index. num_blocks: Number of blocks in the architecture. normalization_class: Normalization layer class. normalization_args: Normalization layer arguments. att_dropout_rate: Dropout rate for the attention module. ffn_dropout_rate: Dropout rate for the feed-forward module. """ def __init__( self, size: int, linear_size: int, attention_size: int, context_size: int, block_id: int, num_blocks: int, normalization_class: torch.nn.Module = torch.nn.LayerNorm, normalization_args: Dict = {}, att_dropout_rate: float = 0.0, ffn_dropout_rate: float = 0.0, ) -> None: """Construct a RWKV object.""" super().__init__() self.layer_norm_att = normalization_class(size, **normalization_args) self.layer_norm_ffn = normalization_class(size, **normalization_args) self.att = SelfAttention( size, attention_size, context_size, block_id, num_blocks ) self.dropout_att = torch.nn.Dropout(p=att_dropout_rate) self.ffn = FeedForward(size, linear_size, block_id, num_blocks) self.dropout_ffn = torch.nn.Dropout(p=ffn_dropout_rate)
[docs] def forward( self, x: torch.Tensor, state: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Compute receptance weighted key value. Args: x: RWKV input sequences. (B, L, size) state: Decoder hidden states. [5 x (B, D_att/size, N)] Returns: x: RWKV output sequences. (B, L, size) x: Decoder hidden states. [5 x (B, D_att/size, N)] """ att, state = self.att(self.layer_norm_att(x), state=state) x = x + self.dropout_att(att) ffn, state = self.ffn(self.layer_norm_ffn(x), state=state) x = x + self.dropout_ffn(ffn) return x, state