import copy
from typing import Optional, Tuple, Union
import humanfriendly
import numpy as np
import torch
from torch_complex.tensor import ComplexTensor
from typeguard import check_argument_types
from espnet2.asr.frontend.abs_frontend import AbsFrontend
from espnet2.layers.log_mel import LogMel
from espnet2.layers.stft import Stft
from espnet2.utils.get_default_kwargs import get_default_kwargs
from espnet.nets.pytorch_backend.frontends.frontend import Frontend
[docs]class DefaultFrontend(AbsFrontend):
"""Conventional frontend structure for ASR.
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
"""
def __init__(
self,
fs: Union[int, str] = 16000,
n_fft: int = 512,
win_length: int = None,
hop_length: int = 128,
window: Optional[str] = "hann",
center: bool = True,
normalized: bool = False,
onesided: bool = True,
n_mels: int = 80,
fmin: int = None,
fmax: int = None,
htk: bool = False,
frontend_conf: Optional[dict] = get_default_kwargs(Frontend),
apply_stft: bool = True,
):
assert check_argument_types()
super().__init__()
if isinstance(fs, str):
fs = humanfriendly.parse_size(fs)
# Deepcopy (In general, dict shouldn't be used as default arg)
frontend_conf = copy.deepcopy(frontend_conf)
self.hop_length = hop_length
if apply_stft:
self.stft = Stft(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=center,
window=window,
normalized=normalized,
onesided=onesided,
)
else:
self.stft = None
self.apply_stft = apply_stft
if frontend_conf is not None:
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
else:
self.frontend = None
self.logmel = LogMel(
fs=fs,
n_fft=n_fft,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
htk=htk,
)
self.n_mels = n_mels
self.frontend_type = "default"
[docs] def output_size(self) -> int:
return self.n_mels
[docs] def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Domain-conversion: e.g. Stft: time -> time-freq
if self.stft is not None:
input_stft, feats_lens = self._compute_stft(input, input_lengths)
else:
input_stft = ComplexTensor(input[..., 0], input[..., 1])
feats_lens = input_lengths
# 2. [Option] Speech enhancement
if self.frontend is not None:
assert isinstance(input_stft, ComplexTensor), type(input_stft)
# input_stft: (Batch, Length, [Channel], Freq)
input_stft, _, mask = self.frontend(input_stft, feats_lens)
# 3. [Multi channel case]: Select a channel
if input_stft.dim() == 4:
# h: (B, T, C, F) -> h: (B, T, F)
if self.training:
# Select 1ch randomly
ch = np.random.randint(input_stft.size(2))
input_stft = input_stft[:, :, ch, :]
else:
# Use the first channel
input_stft = input_stft[:, :, 0, :]
# 4. STFT -> Power spectrum
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
input_power = input_stft.real**2 + input_stft.imag**2
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank
# input_power: (Batch, [Channel,] Length, Freq)
# -> input_feats: (Batch, Length, Dim)
input_feats, _ = self.logmel(input_power, feats_lens)
return input_feats, feats_lens
def _compute_stft(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> torch.Tensor:
input_stft, feats_lens = self.stft(input, input_lengths)
assert input_stft.dim() >= 4, input_stft.shape
# "2" refers to the real/imag parts of Complex
assert input_stft.shape[-1] == 2, input_stft.shape
# Change torch.Tensor to ComplexTensor
# input_stft: (..., F, 2) -> (..., F)
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
return input_stft, feats_lens