Source code for espnet2.asr.encoder.rnn_encoder

from typing import Optional, Sequence, Tuple

import numpy as np
import torch
from typeguard import check_argument_types

from espnet2.asr.encoder.abs_encoder import AbsEncoder
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.rnn.encoders import RNN, RNNP


[docs]class RNNEncoder(AbsEncoder): """RNNEncoder class. Args: input_size: The number of expected features in the input output_size: The number of output features hidden_size: The number of hidden features bidirectional: If ``True`` becomes a bidirectional LSTM use_projection: Use projection layer or not num_layers: Number of recurrent layers dropout: dropout probability """ def __init__( self, input_size: int, rnn_type: str = "lstm", bidirectional: bool = True, use_projection: bool = True, num_layers: int = 4, hidden_size: int = 320, output_size: int = 320, dropout: float = 0.0, subsample: Optional[Sequence[int]] = (2, 2, 1, 1), ): assert check_argument_types() super().__init__() self._output_size = output_size self.rnn_type = rnn_type self.bidirectional = bidirectional self.use_projection = use_projection if rnn_type not in {"lstm", "gru"}: raise ValueError(f"Not supported rnn_type={rnn_type}") if subsample is None: subsample = np.ones(num_layers + 1, dtype=np.int64) else: subsample = subsample[:num_layers] # Append 1 at the beginning because the second or later is used subsample = np.pad( np.array(subsample, dtype=np.int64), [1, num_layers - len(subsample)], mode="constant", constant_values=1, ) rnn_type = ("b" if bidirectional else "") + rnn_type if use_projection: self.enc = torch.nn.ModuleList( [ RNNP( input_size, num_layers, hidden_size, output_size, subsample, dropout, typ=rnn_type, ) ] ) else: self.enc = torch.nn.ModuleList( [ RNN( input_size, num_layers, hidden_size, output_size, dropout, typ=rnn_type, ) ] )
[docs] def output_size(self) -> int: return self._output_size
[docs] def forward( self, xs_pad: torch.Tensor, ilens: torch.Tensor, prev_states: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if prev_states is None: prev_states = [None] * len(self.enc) assert len(prev_states) == len(self.enc) current_states = [] for module, prev_state in zip(self.enc, prev_states): xs_pad, ilens, states = module(xs_pad, ilens, prev_state=prev_state) current_states.append(states) if self.use_projection: xs_pad.masked_fill_(make_pad_mask(ilens, xs_pad, 1), 0.0) else: xs_pad = xs_pad.masked_fill(make_pad_mask(ilens, xs_pad, 1), 0.0) return xs_pad, ilens, current_states